Skip to main content
Log in

Optical gain enhancement and wavefunction confinement tuning in AlSb/InGaAsP/GaAsSb heterostructures

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The results from self-consistent \(k\cdot p \) computation of optical gain characteristics of AlSb/InGaAsP/GaAsSb type-II ultra-thin quantum-well heterostructures show a marked improvement in optical gain as compared to the InGaAsP/GaAsSb type-II ultra-thin quantum well heterostructures. The AlSb/InGaAsP/GaAsSb type-II ultra-thin quantum well heterostructures were designed to obtain enhanced optical gain as compared to InGaAsP/GaAsSb type-II quantum well heterostructures. An improvement in optical gain of 948 \({cm}^{-1}\) and a shift in peak energy of 0.03 eV is attributed to interband resonant tunnelling effect and the band alignment due to the presence of GaAsSb layer. Also, a narrower optical gain spectrum is observed in \(\mathrm {AlSb/}{\mathrm {In}}_{{0.5}}{\mathrm {Ga}}_{{0.5}}{\mathrm {As}}_{{0.8}}\mathrm {P}_{{0.2}}\mathrm {/Ga}{\mathrm {As}}_{{0.5}}{\mathrm {Sb}}_{{0.5}}\) QW heterostructure as compared to the \({\mathrm {In}}_{{0.5}}{\mathrm {Ga}}_{{0.5}}{\mathrm {As}}_{{0.8}}\mathrm {P}_{{0.2}}\mathrm {/Ga}{\mathrm {As}}_{{0.5}}{\mathrm {Sb}}_{{0.5}}\) QW heterostructures. Furthermore, the effect of variation in well width has been studied at AlSb layer thickness 1 nm for optical gain enhancement and wavefunction confinement where the resonant tunnelling effect is observed.

Graphic Abstract

Fig. Optical gain in \({AlSb/}{{In}}_{{0.5}}{{Ga}}_{{0.5}}{{As}}_{{0.8}}{P}_{{0.2}}{/Ga}{{As}}_{{0.5}}{{Sb}}_{{0.5}}\) heterostructures

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment:All the data is already included in the Results and analysis sections of the manuscript.]

References

  1. R.Q. Yang, Electronic states and interband tunneling conditions in type-II quantum well heterostructures. J. Appl. Phys. 127(2), 025705 (2020)

    Article  ADS  Google Scholar 

  2. B. Nie, J. Huang, C. Zhao, W. Huang, Y. Zhang, Y. Cao, W. Ma, InAs/GaSb superlattice resonant tunneling diode photodetector with InAs/AlSb double barrier structure. Appl. Phys. Lett. 114(5), 053509 (2019)

    Article  ADS  Google Scholar 

  3. C. Grillet, A. Cresti, M.G. Pala, Vertical GaSb/AlSb/InAs heterojunction tunnel-FETs: a full quantum study. IEEE Trans. Electron Devices 65(7), 3038–3044 (2018)

    Article  ADS  Google Scholar 

  4. A. Kastalsky, V.J. Goldman, J.H. Abeles, Possibility of infrared laser in a resonant tunneling structure. Appl. Phys. Lett. 59(21), 2636–2638 (1991)

    Article  ADS  Google Scholar 

  5. Boris, G., Dwight, W., Optical gain in an interband-resonant-tunneling-diode. In 4th IEEE Conference on Nanotechnology, pp. 220–222. IEEE (2004)

  6. M.O. Manasreh, Antimonide-Related Strained-Layer Heterostructures (CRC Press, London, 2019)

    Book  Google Scholar 

  7. H. Kitabayashi, T. Waho, M. Yamamoto, Resonant interband tunneling current in InAs/AlSb/GaSb/AlSb/InAs diodes with extremely thin AlSb barrier layers. Appl. Phys. Lett. 71(4), 512–514 (1997)

    Article  ADS  Google Scholar 

  8. H. Kitabayashi, T. Waho, M. Yamamoto, Resonant interband tunneling current in InAs/AlSb/GaSb/AlSb/InAs double barrier diodes. J. Appl. Phys. 84(3), 1460–1466 (1998)

    Article  ADS  Google Scholar 

  9. H. Kitabayashi, T. Waho, M. Yamamoto, Resonant interband tunnelling diode with high peak current density. Electron. Lett. 33(1), 102–104 (1997)

    Article  ADS  Google Scholar 

  10. L. Yang, J.F. Chen, A.Y. Cho, A new GaSb/AlSb/GaSb/AlSb/InAs double-barrier interband tunneling diode and its tunneling mechanism. J. Appl. Phys. 68(6), 2997–3000 (1990)

    Article  ADS  Google Scholar 

  11. K.F. Longenbach, L.F. Luo, W.I. Wang, Resonant interband tunneling in InAs/GaSb/AlSb/InAs and GaSb/InAs/AlSb/GaSb heterostructures. Appl. Phys. Lett. 57(15), 1554–1556 (1990)

    Article  ADS  Google Scholar 

  12. I. Lapushkin, A. Zakharova, V. Gergel, H. Goronkin, S. Tehrani, Self-consistent modeling of the current-voltage characteristics of resonant tunneling structures with type II heterojunctions. J. Appl. Phys. 82(5), 2421–2426 (1997)

    Article  ADS  Google Scholar 

  13. R. Bhat et al., InP/ GaAsSb/ InP and InP/ GaAsSb/ InGaAsP double heterojunction bipolar transistors with a carbon-doped base grown by organometallic chemical vapor deposition. Appl. Phys. Lett. 68(7), 985–987 (1996)

    Article  ADS  Google Scholar 

  14. H.-G. Liu et al., Extrinsic Base Surface Passivation in High Speed ”Type-II” GaAsSb/InP DHBTs Using an InGaAsP ledge structure. Chin. Phys. Lett. 27(5), 058502 (2010)

  15. T.S. Navruz, Modeling lattice-matched InP-based multijunction solar cells. Turk. J. Electr. Eng. Comput. Sci. 25(2), 1010–1020 (2017)

    Article  Google Scholar 

  16. A.K. Singh, Md Riyaj, S.G. Anjum, N. Yadav, A. Rathi, M.J. Siddiqui, P.A. Alvi, Anisotropy and optical gain improvement in type-II In0. 3Ga0. 7As/GaAs0. 4Sb0. 6 nano-scale heterostructure under external uniaxial strain. Superlattices Microstruct. 98, 406–415 (2016)

    Article  ADS  Google Scholar 

  17. A.K. Singh, A. Rathi, Md Riyaj, G. Bhardwaj, P.A. Alvi, Optical gain tuning within IR region in type-II In0.5Ga0.5As0.8P0.2/GaAs0.5Sb0.5 nano-scale heterostructure under external uniaxial strain. Superlattices Microstruct. 111, 591–602 (2017)

    Article  ADS  Google Scholar 

  18. R. Dolia, G. Bhardwaj, A.K. Singh, S. Kumar, P.A. Alvi, Optimization of Type-II ‘W’ shaped InGaAsP/GaAsSb nanoscale-heterostructure under electric field and temperature. Superlattices Microstruct. 112, 507–516 (2017)

    Article  ADS  Google Scholar 

  19. C.K. Maiti, Selected Works of Professor Herbert Kroemer (World Scientific, Singapore, 2008)

    Book  Google Scholar 

  20. J.-B. Rodriguez, C. Cervera, P. Christol, A type-II superlattice period with a modified InAs to GaSb thickness ratio for midwavelength infrared photodiode performance improvement. Appl. Phys. Lett. 97(25), 251113 (2010)

  21. A. Greene, S. Madisetti, M. Yakimov, V. Tokranov, S. Oktyabrsky. Development of III-Sb Technology for p-channel MOSFETs. In Frontiers in electronics: Selected Papers from the Workshop on Frontiers in Electronics 2013 (WOFE-13), pp. 17–32 (2014)

  22. A.M. Hoang, G. Chen, A. Haddadi, S.A. Pour, M. Razeghi, Demonstration of shortwavelength infrared photodiodes based on type-II InAs/GaSb/AlSb superlattices. Appl. Phys. Lett. 100(21), 211101 (2012)

    Article  ADS  Google Scholar 

  23. K. Akel, M. Hostut, T. Tansel, Y. Ergun, Large hh-lh splitting energy for InAs/AlSb/GaSb based N-structure photodetectors. J. Appl. Phys. 123(2), 025703 (2018)

    Article  ADS  Google Scholar 

  24. A. Joullié, P. Christol, GaSb-based mid-infrared 2–5 \(\upmu \)m laser diodes. C. R. Phys. 4(6), 621–637 (2003)

    Article  ADS  Google Scholar 

  25. K. Ohtani, H. Ohno, Intersubband electroluminescence in InAs/GaSb/AlSb type-II cascade structures. Appl. Phys. Lett. 74(10), 1409–1411 (1999)

    Article  ADS  Google Scholar 

  26. J. R. Meyer, C. L. Felix, J. I. Malin, I. Vurgaftman, C-H. Lin, R. Q. Yang, S-S. Pei, L. R. Ram-Mohan, IR sources and modulators based on InAs/GaSb/AlSb-family quantum wells. MRS Online Proceedings Library Archive 450 (1996)

  27. A. Rathi, A. K. Singh, Optical response computations in type-II doped AlSb/InAs nano-heterostructure under external uniaxial strain in SWIR range. In 2017 IEEE 3rd International Conference on Engineering Technologies and Social Sciences (ICETSS), pp. 1–4. IEEE (2017)

  28. M. Razeghi, B.-M. Nguyen, Band gap tunability of Type II Antimonide-based superlattices. Phys. Procedia 3(2), 1207–1212 (2010)

    Article  ADS  Google Scholar 

  29. E.-H. Lee, L.A. Eldada, M. Razeghi, C. Jagadish, VLSI Micro-and Nanophotonics: Science, Technology, and Applications (CRC Press, London, 2018)

    Book  Google Scholar 

  30. M.M. Alyoruk, Y. Ergun, M. Hostut, AlSb and InAs-GaSb layer thickness effect on HH-LH splitting and band gap energies in InAs/AlSb/GaSb type-II superlattices. Opto-Electron. Rev. 23(1), 26–29 (2015)

    Article  ADS  Google Scholar 

  31. A. Kilic, T. Tansel, M. Hostut, S. Elagoz, Y. Ergun, The investigation of quantum efficiency constituents of InAs/AlSb/GaSb based N structure type-II SL photodetectors with InAlAs interface. Semicond. Sci. Technol. 33(9), 094001 (2018)

    Article  ADS  Google Scholar 

  32. Jeffrey G. Cederberg, Eric A. Shaner, Emil Andrew Kadlec, Alex Albrecht. Efforts to Improve Interfaces during Growth of GaAsSb/InGaAs Heterostructures. No. SAND2014-15249PE. Sandia National Lab. (SNL-NM), Albuquerque, NM (2014)

  33. C.-S. Chang, S.L. Chuang, Modeling of strained quantum-well lasers with spin-orbit coupling. IEEE J. Sel. Top. Quant. Electron. 1(2), 218–229 (1995)

    Article  ADS  Google Scholar 

  34. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (Wiley, Amsterdam, 2005)

    Book  Google Scholar 

  35. P.S. Zory, Quantum Well Lasers (Academic Press, New York, 1993)

    Google Scholar 

  36. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors are obliged to Dr. Konstantin Kolokolov (Faculty of Physics, M. V. Lomonosov Moscow State University, Russia) for his support with the Heterostructure Design Studio software. Authors acknowledge Manipal University Jaipur, 303007 for the Seed grant, project Grant no: MUJ/REGR/1467/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Rathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Singh, R., Singh, K. et al. Optical gain enhancement and wavefunction confinement tuning in AlSb/InGaAsP/GaAsSb heterostructures. Eur. Phys. J. B 94, 123 (2021). https://doi.org/10.1140/epjb/s10051-021-00131-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00131-w

Navigation