Skip to main content
Log in

Chimera states in FitzHugh–Nagumo networks with reflecting connectivity

  • Regular Article – Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the effects of reflecting connectivity in a network composed of FitzHugh–Nagumo (FHN) elements linked in a ring topology. Reflecting connectivity is inspired by the linking between the opposite hemispheres in the mammalian brain. To study synchronization phenomena and coexistence of synchronous and asynchronous domains (chimera states) under the influence of this connectivity, we use two versions of the FHN model: Version I where membrane and recovery potentials are interlinked via a rotational matrix (Omelchenko et al. PRL 110:224101, 2013), and version II where only the membrane potentials are linked and not the recovery ones (Shepelev et al., Phys. Lett. A 381:1398, 2017). In both realizations, the reflecting connectivity forces the activity to organise in two connected semirings. Our numerical results give evidence that, for FHN-I and positive (negative) coupling strength, coherent (incoherent) oscillatory regions develop and reside in the junctions between the two semirings. For the FHN-II model which supports multistability, our simulations indicate that for appropriate values of the parameters the two semirings are separated via oscillating elements. The center parts of the two semirings are composed either by elements which are frozen at the FHN fixed points (coexistence of fixed points and oscillatory states), or by coherent oscillatory elements (coexistence of coherent and incoherent nodes). Notable, here, is the case of oscillation death, which has also been reported for other oscillators coupled via one of their variables. These results can be useful for interpreting inhomogeneous and localised coordinated activity observed in the mammalian brain.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Kuramoto, D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenomena Complex Syst. 5, 380 (2002)

    Google Scholar 

  2. Y. Kuramoto, Reduction methods applied to nonlocally coupled oscillator systems, in Nonlinear Dynamics and Chaos: Where do we go from here?, ed. by S.J. Hogan, A.R. Champneys, A.R. Krauskopf, M. di Bernado, R. Eddie Wilson, H.M. Osinga, M.E. Homer (CRC Press, New York, 2002), pp. 209–227

    Google Scholar 

  3. D.M. Abrams, S.H. Strogatz, Chimera states for coupled oscillators. Phys. Rev. Lett. 93, 174102 (2004)

    Article  ADS  Google Scholar 

  4. I. Omelchenko, O.E. Omel’chenko, P. Hövel, E. Schöll, When nonlocal coupling between oscillators becomes stronger: patched synchrony or multi-chimera states. Phys. Rev. Lett. 110, 224101 (2013)

    Article  ADS  Google Scholar 

  5. N.D. Tsigkri-DeSmedt, J. Hizanidis, P. Hövel, A. Provata, Multi-chimera states and transitions in the Leaky Integrate-and-Fire model with nonlocal and hierarchical connectivity. Eur. Phys. J. Spec. Top. 225, 1149–1164 (2016)

    Article  Google Scholar 

  6. S. Luccioli, A. Politi, Irregular collective behavior of heterogeneous neural networks. Phys. Rev. Lett. 105, 158104 (2010)

    Article  ADS  Google Scholar 

  7. S. Olmi, A. Politi, A. Torcini, Collective chaos in pulse-coupled neural networks. Europhys. Lett. 92, 60007 (2010)

    Article  ADS  Google Scholar 

  8. N.D. Tsigkri-DeSmedt, J. Hizanidis, E. Schöll, P. Hövel, A. Provata, Chimeras in Leaky Integrate-and-Fire neural networks: effects of reflecting connectivities. Eur. Phys. J. B 90, 139 (2017)

    Article  ADS  Google Scholar 

  9. J. Hizanidis, V. Kanas, A. Bezerianos, T. Bountis, Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models. Int. J. Bifur. Chaos 24, 1450030 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Z. Wei, F. Parastesh, H. Azarnoush, S. Jafari, D. Ghosh, M. Perc, M. Slavinec, Nonstationary chimeras in a neuronal network. Europhys. Lett. 123, 48003 (2018)

    Article  Google Scholar 

  11. I.A. Shepelev, T.E. Vadivasova, A.V. Bukh, G.I. Strelkova, V.S. Anishchenko, New type of chimera structures in a ring of bistable FitzHugh–Nagumo oscillators with nonlocal interaction. Phys. Lett. A 381, 1398–1404 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Hizanidis, E. Panagakou, I. Omelchenko, E. Schöll, P. Hövel, A. Provata, Chimera states in population dynamics: networks with fragmented and hierarchical connectivities. Phys. Rev. E 92, 012915 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. B.W. Li, H. Dierckx, Spiral wave chimeras in locally coupled oscillator systems. Phys. Rev. E 93, 020202 (2016)

    Article  ADS  Google Scholar 

  14. S. Nkomo, M.R. Tinsley, K. Showalter, Chimera and chimera-like states in populations of nonlocally coupled homogeneous and heterogeneous chemical oscillators. Chaos 26, 094826 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. L. Bauer, J. Bassett, P. Hövel, Y.N. Kyrychko, K.B. Blyuss, Chimera states in multi-strain epidemic models with temporary immunity. Chaos 27, 114317 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. P. Jaros, Y. Maistrenko, T. Kapitaniak, Chimera states on the route from coherence to rotating waves. Phys. Rev. E 91, 022907 (2015)

    Article  ADS  Google Scholar 

  17. T. Kapitaniak, J. Kurths, Synchronized pendula: from Huygens’ clocks to chimera states. Eur. Phys. J. Spec. Top. 223, 609–612 (2014)

    Article  Google Scholar 

  18. D. Dudkowski, J. Grabski, J. Wojewoda, P. Perlikowski, Y. Maistrenko, T. Kapitaniak, Experimental multistable states for small network of coupled pendula. Sci. Rep. 6, 29833 (2016)

    Article  ADS  Google Scholar 

  19. N. Lazarides, G. Neofotistos, G.P. Tsironis, Chimeras in SQUID metamaterials. Phys. Rev. B 91, 054303 (2015)

    Article  ADS  Google Scholar 

  20. J. Hizanidis, N. Lazarides, G.P. Tsironis, Robust chimera states in SQUID metamaterials with local interactions. Phys. Rev. E 94 (2016)

  21. J. Hizanidis, N.E. Kouvaris, G. Zamora-López, A. Díaz-Guilera, C.G. Antonopoulos, Chimera-like states in modular neural networks. Sci. Rep. 6, 19845 (2016)

    Article  ADS  Google Scholar 

  22. N.C. Rattenborg, C.J. Amlaner, S.L. Lima, Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci. Biobehav. Rev. 24, 817–842 (2000)

    Article  Google Scholar 

  23. N.C. Rattenborg, Do birds sleep in flight? Naturwissenschaften 93, 413–425 (2006)

    Article  ADS  Google Scholar 

  24. F. Mormann, K. Lehnertz, P. David, C.E. Elger, Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144, 358 (2000)

    Article  ADS  MATH  Google Scholar 

  25. F. Mormann, T. Kreuz, R.G. Andrzejak, P. David, K. Lehnertz, C.E. Elger, Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res. 53, 173 (2003)

    Article  Google Scholar 

  26. R.G. Andrzejak, C. Rummel, F. Mormann, K. Schindler, All together now: analogies between chimera state collapses and epileptic seizures. Sci. Rep. 6, 23000 (2016)

    Article  ADS  Google Scholar 

  27. H.M. Mitchell, P.S. Dodds, J.M. Mahoney, C.M. Danforth, Chimera states and seizures in a mouse neuronal model. Int. J. Bifurcat. Chaos. 30, 2050256 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Gerster, R. Berner, J. Sawicki, A. Zakharova, A. Skoch, J. Hlinka, K. Lehnertz, E. Schöll, FitzHugh-Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena. Chaos 30, 123130 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. E.A. Martens, S. Thutupalli, A. Fourrière, O. Hallatschek, Chimera states in mechanical oscillator networks. Proc. Natl. Acad. Sci. 110(26), 10563–10567 (2013)

    Article  ADS  Google Scholar 

  30. S. Olmi, E.A. Martens, S. Thutupalli, A. Torcini, Intermittent chaotic chimeras for coupled rotators. Phys. Rev. E 92, 030901 (2015)

    Article  ADS  Google Scholar 

  31. M.R. Tinsley, S. Nkomo, K. Showalter, Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys. 8, 662 (2012)

    Article  Google Scholar 

  32. J.F. Totz, J. Rode, M.R. Tinsley, K. Showalter, H. Engel, Spiral wave chimera states in large populations of coupled chemical oscillators. Nat. Phys. 14, 282–285 (2018)

    Article  Google Scholar 

  33. J.F. Totz, M.R. Tinsley, H. Engel, K. Showalter, Transition from spiral wave chimeras to phase cluster states. Sci. Rep. 10, 7821 (2020)

    Article  ADS  Google Scholar 

  34. A.M. Hagerstrom, T.E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll, Experimental observation of chimeras in coupled-map lattices. Nat. Phys. 8, 658 (2012)

    Article  Google Scholar 

  35. M.J. Panaggio, D. Abrams, Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28, R67–R87 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. E. Schöll, Synchronization patterns and chimera states in complex networks: interplay of topology and dynamics. Eur. Phys. J. Spec. Top. 225, 891–919 (2016)

    Article  Google Scholar 

  37. O.E. Omel’Chenko, The mathematics behind chimera states. Nonlinearity 31, R121 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. S. Majhi, B.K. Bera, D. Ghosh, M. Perc, Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100–121 (2019)

    Article  ADS  Google Scholar 

  39. F. Parastesh, S. Jafari, H. Azarnoush, Z. Shahriari, Z. Wang, S. Boccaletti, M. Perc, Chimeras. Phys. Rep. 898, 1–114 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Schmidt, T. Kasimatis, J. Hizanidis, A. Provata, P. Hövel, Chimera patterns in two-dimensional networks of coupled neurons. Phys. Rev. E 95, 032224 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  41. S. Kundu, S. Majhi, B.K. Bera, D. Ghosh, M. Lakshmanan, Chimera states in two-dimensional networks of locally coupled oscillators. Phys. Rev. E 97, 022201 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  42. T. Kasimatis, J. Hizanidis, A. Provata, Three-dimensional chimera patterns in networks of spiking neuron oscillators. Phys. Rev. E 97, 052213 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  43. Y. Maistrenko, O. Sudakov, O. Osiv, V. Maistrenko, Chimera states in three dimensions. New J. Phys. 17, 073037 (2015)

    Article  ADS  MATH  Google Scholar 

  44. V. Maistrenko, O. Sudakov, O. Osiv, Y. Maistrenko, Multiple scroll wave chimera states. Eur. Phys. J. Spec. Top. 226, 1867–1881 (2017)

    Article  MATH  Google Scholar 

  45. S. Kundu, B.K. Bera, D. Ghosh, M. Lakshmanan, Chimera patterns in three-dimensional locally coupled systems. Phys. Rev. E 99, 022204 (2019)

    Article  ADS  Google Scholar 

  46. I. Omelchenko, A. Provata, J. Hizanidis, E. Schöll, P. Hövel, Robustness of chimera states for coupled FitzHugh-Nagumo oscillators. Phys. Rev. E 91, 022917 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  47. S. Ulonska, I. Omelchenko, A. Zakharova, E. Schöll, Chimera states in networks of Van der Pol oscillators with hierarchical connectivities. Chaos 26, 094825 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  48. J. Sawicki, I. Omelchenko, A. Zakharova, E. Schöll, Chimera states in complex networks: interplay of fractal topology and delay. Eur. Phys. J. Spec. Top. 226, 1883–1892 (2017)

    Article  Google Scholar 

  49. J. Sawicki, I. Omelchenko, A. Zakharova, E. Schöll, Delay-induced chimeras in neural networks with fractal topology. Eur. Phys. J. B 92, 54 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  50. I. Omelchenko, Y. Maistrenko, P. Hövel, E. Schöll, Loss of coherence in dynamical networks: Spatial chaos and chimera states. Phys. Rev. Lett. 106, 234102 (2011)

    Article  ADS  Google Scholar 

  51. E. Rybalova, V.S. Anishchenko, G.I. Strelkova, A. Zakharova, Solitary states and solitary state chimera in neural networks. Chaos 29, 071106 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. N.D. Tsigkri-DeSmedt, I. Koulierakis, G. Karakos, A. Provata, Synchronization patterns in LIF neuron networks: merging nonlocal and diagonal connectivity. Eur. Phys. J. B 91, 305 (2018)

  53. B.K. Bera, S. Majhi, D. Ghosh, M. Perc, Chimera states: effects of different coupling topologies. Europhys. Lett. 118, 10001 (2017)

    Article  ADS  Google Scholar 

  54. B.K. Bera, D. Ghosh, Chimera states in purely local delay-coupled oscillators. Phys. Rev. E 93, 052223 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  55. E.S. Finn, X. Shen, D. Scheinost, M.D. Rosenberg, J. Huang, M.M. Chun, X. Papademetris, R.T. Constable, Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2016)

    Article  Google Scholar 

  56. J.D. Murray, Mathematical Biology (Chapter 6) (Springer, Berlin, 1993)

    Google Scholar 

  57. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  58. S. Majhi, M. Perc, D. Ghosh, Chimera states in uncoupled neurons induced by a multilayer structure. Sci. Rep. 6, 39033 (2016)

    Article  ADS  Google Scholar 

  59. S. Majhi, M. Perc, D. Ghosh, Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos 27, 073109 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  60. I. A. Shepelev, T. E. Vadivasova. Variety of spatio-temporal regimes in a 2d lattice of coupled bistable Fitzhugh–Nagumo oscillators. Formation mechanisms of spiral and double-well chimeras. Commun. Nonlinear Sci. Numer. Simul. 79, 104925 (2019)

  61. A. Zakharova, M. Kapeller, E. Sch\(\ddot{\rm o}\)ll, Chimera death: symmetry breaking in dynamical networks. Phys. Rev. Lett. 112, 154101 (2014)

Download references

Acknowledgements

A.P. would like to thank Profs.S. Lambropoulou and E. Schöll for constructive discussions. This work was supported by computational time granted from the Greek Research & Technology Network (GRNET) in the National HPC facility - ARIS - under Project ID: PR009012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astero Provata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rontogiannis, A., Provata, A. Chimera states in FitzHugh–Nagumo networks with reflecting connectivity. Eur. Phys. J. B 94, 97 (2021). https://doi.org/10.1140/epjb/s10051-021-00097-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00097-9

Navigation