Skip to main content
Log in

Evolution of supersonic 2-crowdion clusters in a 3D Morse lattice

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The rapid development of new technologies is often associated with the realization of nonequilibrium states in materials, in which new mechanisms of structure evolution, different from the traditional ones, can arise. One example is the formation of crowdions, that is, interstitial atoms located in close-packed atomic rows. Crowdions can move at subsonic or supersonic speeds. It has previously been demonstrated that supersonic crowdion clusters are much more efficient at transferring mass than classic supersonic crowdions. This work presents an analysis of the propagation of supersonic crowdion clusters in parallel close-packed atomic rows in an fcc Morse crystal. Supersonic 2-crowdions are excited in four close-packed atomic rows, between which there is one close-packed row, which is not initially excited. The counterintuitive formation of a vacancy in the inner atomic row was observed rather far from the point of excitation. The distance between the vacancy in the inner row and the initiation point depends on the initiation energy. The mechanism of vacancy formation is described. The results obtained can be useful for analyzing the rearrangement and accumulation of defects in materials under extreme conditions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has data included as electronic supplementary material.

References

  1. S.A. Turnage, M. Rajagopalan, K.A. Darling, P. Garg, C. Kale, B.G. Bazehhour, I. Adlakha, B.C. Hornbuckle, C.L. Williams, P. Peralta et al., Anomalous mechanical behavior of nanocrystalline binary alloys under extreme conditions. Nat. Commun. 9(1), 1–10 (2018)

    Google Scholar 

  2. A.M. Kiss, A.Y. Fong, N.P. Calta, V. Thampy, A.A. Martin, P.J. Depond, J. Wang, M.J. Matthews, R.T. Ott, C.J. Tassone et al., Laser-induced keyhole defect dynamics during metal additive manufacturing. Adv. Eng. Mater. 21(10), 1900455 (2019)

    Google Scholar 

  3. E. A. Korznikova, E. Schafler, G. Steiner, M. J. Zehetbauer, Measurements of vacancy type defects in SPD deformed Ni, by Y.T. Zhu, T.G. Langdon, Z. Horita, M.J. Zehetbauer, S.L. Semiatin, T.C. Lowe. Warrendate, P.A.: The Minerals, Metals & Materials Society (TMS) (2006) 97–102

  4. Q. Wei, B.E. Schuster, S.N. Mathaudhu, K.T. Hartwig, L.J. Kecskes, R.J. Dowding, K.T. Ramesh, Dynamic behaviors of body-centered cubic metals with ultrafine grained and nanocrystalline microstructures. Mater. Sci. Eng. A 493(1–2), 58–64 (2008)

    Google Scholar 

  5. I.A. Shepelev, A.P. Chetverikov, S.V. Dmitriev, E.A. Korznikova, Shock waves in graphene and boron nitride. Comput. Mater. Sci. 177, 109549 (2020)

    Google Scholar 

  6. D.A. Terentyev, T.P.C. Klaver, P. Olsson, M.-C. Marinica, F. Willaime, C. Domain, L. Malerba, Self-trapped interstitial-type defects in iron. Phys. Rev. Lett. 100(14), 145503 (2008)

    ADS  Google Scholar 

  7. D.A. Terentyev, L. Malerba, M. Hou, Dimensionality of interstitial cluster motion in bcc-Fe. Phys. Rev. B 75(10), 104108 (2007)

    ADS  Google Scholar 

  8. Z. Zhang, K. Yabuuchi, A. Kimura, Defect distribution in ion-irradiated pure tungsten at different temperatures. J. Nucl. Mater. 480, 207–215 (2016)

    ADS  Google Scholar 

  9. W.H. Zhou, C.G. Zhang, Y.G. Li, Z. Zeng, Transport, dissociation and rotation of small self-interstitial atom clusters in tungsten. J. Nucl. Mater. 453(1–3), 202–209 (2014)

    ADS  Google Scholar 

  10. H. Nordmark, R. Holmestad, J.C. Walmsley, A. Ulyashin, Transmission electron microscopy study of hydrogen defect formation at extended defects in hydrogen plasma treated multicrystalline silicon. J. Appl. Phys. 105(3), 033506 (2009)

    ADS  Google Scholar 

  11. S.P. Fitzgerald, Structure and dynamics of crowdion defects in bcc metals. J. Micromech. Mol. Phys. 03n04(4), 1840003 (2018)

    Google Scholar 

  12. A. Xu, D.E.J. Armstrong, C. Beck, M.P. Moody, G.D. Smith, P.A. Bagot, S.G. Roberts, Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: An atom probe tomography and nanoindentation study. Acta Mater. 124, 71–78 (2017)

    ADS  Google Scholar 

  13. K. Xu, M.H. Weber, Y. Cao, W. Jiang, D.J. Edwards, B.R. Johnson, J.S. McCloy, Ion irradiation induced changes in defects of iron thin films: Electron microscopy and positron annihilation spectroscopy. J. Nucl. Mater. 526, 151774 (2019)

    Google Scholar 

  14. A.M. Marjaneh, D. Saadatmand, I. Evazzade, R.I. Babicheva, E. Soboleva, N. Srikanth, K. Zhou, E. Korznikova, S. Dmitriev, Mass transfer in the Frenkel-Kontorova chain initiated by molecule impact. Phys. Rev. E 98(2), 023003 (2018)

    ADS  Google Scholar 

  15. T.I. Mazilova, E.V. Sadanov, V.N. Voyevodin, V.A. Ksenofontov, I.M. Mikhailovskij, Impact-induced concerted mass transport on w surfaces by a Voidion mechanism. Surf. Sci. 669, 10–15 (2018)

    ADS  Google Scholar 

  16. O.U. Uche, D. Perez, A.F. Voter, J.C. Hamilton, Rapid diffusion of magic-size islands by combined glide and vacancy mechanism. Phys. Rev. Lett. 103(4), 046101 (2009)

    ADS  Google Scholar 

  17. Y. Matsukawa, S.J. Zinkle, One-dimensional fast migration of vacancy clusters in metals. Science 318(5852), 959–962 (2007)

    ADS  Google Scholar 

  18. V.L. Indenbom, Interstitial (crowdion) mechanism of plastic deformation and failure. JETPL 12, 369 (1970)

    ADS  Google Scholar 

  19. I.A. Shepelev, D.V. Bachurin, E.A. Korznikova, A.M. Bayazitov, S.V. Dmitriev, Mechanism of remote vacancy emergence by a supersonic crowdion cluster in a 2D Morse lattice. Chinese J. Phys. 70, 355–362 (2021)

    ADS  Google Scholar 

  20. S .V. Dmitriev, N .N. Medvedev, A .P. Chetverikov, K. Zhou, M .G. Velarde, Highly enhanced transport by supersonic N-crowdions, physica status solidi (RRL). Rapid Res. Lett. 11(12), 1700298 (2017)

    Google Scholar 

  21. A.P. Chetverikov, I.A. Shepelev, E.A. Korznikova, A.A. Kistanov, S.V. Dmitriev, M.G. Velarde, Breathing subsonic crowdion in Morse lattices. Comput. Condens. Matter 13, 59–64 (2017)

    Google Scholar 

  22. R.I. Babicheva, I. Evazzade, E.A. Korznikova, I.A. Shepelev, K. Zhou, S.V. Dmitriev, Low-energy channel for mass transfer in Pt crystal initiated by molecule impact. Comput. Mater. Sci. 163, 248–255 (2019)

    Google Scholar 

  23. A.M. Bayazitov, E.A. Korznikova, I.A. Shepelev, A.P. Chetverikov, S.K. Khadiullin, E.A. Sharapov, P.V. Zakharov, S.V. Dmitriev, Scenarios of mass transfer in fcc copper: the role of point defects. IOP Conf. Ser. Mater. Sci. Eng. 447, 012040 (2018)

    Google Scholar 

  24. A.M. Bayazitov, E.A. Korznikova, I.A. Shepelev, P.V. Zakharov, S.V. Dmitriev, Breathing dynamics of 2-crowdions in platinum, progress in biomedical optics and imaging. Proc. SPIE 11459, 114590Z (2020)

    Google Scholar 

  25. A.M. Bayazitov, E.A. Korznikova, A.S. Semenov, D.I. Borisov, S.V. Dmitriev, Interaction of supersonic 2-crowdions in fcc platinum. IOP Conf. Ser. Mat. Sci. Eng. 1008(1), 012068 (2020)

    Google Scholar 

  26. A. M. Bayazitov, S. V. Dmitriev, P. V. Zakharov, I. A. Shepelev, S. Y. Fomin, E. A. Korznikova, Features of mass transfer by N-crowdions in fcc Ni3Al lattice, in: IOP Conference Series: Materials Science and Engineering, Vol. 672, IOP Publishing, p. 012033 (2019)

  27. E.A. Korznikova, I.A. Shepelev, A.P. Chetverikov, S.V. Dmitriev, S.Y. Fomin, K. Zhou, Dynamics and stability of subsonic crowdion clusters in 2D Morse crystal. J. Exp. Theor. Phys. 127(6), 1009–1015 (2018)

    ADS  Google Scholar 

  28. I.A. Shepelev, E.A. Korznikova, D.V. Bachurin, A.S. Semenov, A.P. Chetverikov, S.V. Dmitriev, Supersonic crowdion clusters in 2d Morse lattice. Phys. Lett. A 384(1), 126032 (2020)

    Google Scholar 

  29. V. Koch, A. Majumder, X. Wang, Cherenkov radiation from jets in heavy-ion collisions. Phys. Rev. Lett. 96(17), 172302 (2006)

    ADS  Google Scholar 

  30. A.I. Dmitriev, A.Y. Nikonov, Features of the \(\Sigma _5\) and \(\Sigma _9\) grain boundaries in bcc and fcc metals under shear loading - a molecular dynamics study. Facta Univ. Ser. Mech. Eng. 15(2), 285–294 (2017)

    Google Scholar 

  31. C. Björkas, K. Nordlund, S. Dudarev, Modelling radiation effects using the ab-initio based tungsten and vanadium potentials. Nucl. Instrum. Methods Phys. Res., Sect. B 267(18), 3204–3208 (2009)

    ADS  Google Scholar 

  32. K. Nordlund, Historical review of computer simulation of radiation effects in materials. J. Nucl. Mater. 520, 273–295 (2019)

    ADS  Google Scholar 

  33. Y. Hong, N. Zhang, L. Xiong, Nanoscale plastic deformation mechanisms of single crystalline silicon under compression, tension and indentation. J. Micromech. Mol. Phys. 1(03n04), 1640007 (2016)

    Google Scholar 

  34. B. Liu, L. Bai, E.A. Korznikova, S.V. Dmitriev, A.W.-K. Law, K. Zhou, Thermal conductivity and tensile response of phosphorene nanosheets with vacancy defects. J. Phys. Chem. C 121(25), 13876–13887 (2017)

    Google Scholar 

  35. L. Bai, N. Srikanth, E.A. Korznikova, J.A. Baimova, S.V. Dmitriev, K. Zhou, Wear and friction between smooth or rough diamond-like carbon films and diamond tips. Wear 372, 12–20 (2017)

    Google Scholar 

  36. L.K. Rysaeva, E.A. Korznikova, R.T. Murzaev, D.U. Abdullina, A.A. Kudreyko, J.A. Baimova, D.S. Lisovenko, S.V. Dmitriev, Elastic damper based on the carbon nanotube bundle. Facta Univ. Ser. Mech. Eng. 18(1), 001–012 (2020)

    Google Scholar 

  37. S.V. Dmitriev, Discrete breathers in crystals: energy localization and transport. J. Micromech. Mol. Phys. 1(02), 1630001 (2016)

    Google Scholar 

  38. H.-Y. Chen, N.-T. Tsou, The analysis of thermal-induced phase transformation and microstructural evolution in Ni-Ti based shape memory alloys by molecular dynamics. Comput. Model. Eng. Sci. 120(2), 319–332 (2019)

    Google Scholar 

  39. D.S. Ryabov, G.M. Chechin, A. Upadhyaya, E.A. Korznikova, V.I. Dubinko, S.V. Dmitriev, Delocalized nonlinear vibrational modes of triangular lattices. Nonlinear Dyn. 102(4), 2793–2810 (2020)

    Google Scholar 

  40. E.A. Korznikova, D.V. Bachurin, S.Y. Fomin, A.P. Chetverikov, S.V. Dmitriev, Instability of vibrational modes in hexagonal lattice. Eur. Phys. J. B 90(2), 1–8 (2017)

    Google Scholar 

  41. L. Malerba, Molecular dynamics simulation of displacement cascades in \(\alpha \)-fe: A critical review. J. Nucl. Mater. 351(1–3), 28–38 (2006)

    ADS  Google Scholar 

  42. S.V. Dmitriev, E.A. Korznikova, A.P. Chetverikov, Supersonic N-crowdions in a two-dimensional Morse crystal. J. Exp. Theor. Phys. 126(3), 347–352 (2018)

    ADS  Google Scholar 

  43. E. A. Korznikova, I. A. Shepelev, A. P. Chetverikov, S. Y. Fomin, S. V. Dmitriev, Subsonic m, n-crowdions in 2D Morse crystal, in: IOP Conference Series: Materials Science and Engineering, Vol. 447, IOP Publishing, p. 012030 (2018)

  44. I. Shepelev, S. Dmitriev, A. Kudreyko, M. Velarde, E. Korznikova, Supersonic voidions in 2d morse lattice. Chaos, Solitons Fract. 140, 110217 (2020)

    MathSciNet  Google Scholar 

  45. P.M. Morse, Diatomic molecules according to the wave mechanics. II. vibrational levels. Phys. Rev. 34, 57–64 (1929). https://doi.org/10.1103/PhysRev.34.57

    Article  MATH  Google Scholar 

  46. P. Zakharov, M. Starostenkov, E. Korznikova, A. Eremin, I. Lutsenko, S. Dmitriev, Excitation of soliton-type waves in crystals of the A3B stoichiometry. Phys. Solid State 61(11), 2160–2166 (2019)

    ADS  Google Scholar 

  47. Y. Zhang, B. Li, Q.S. Zheng, G.M. Genin, C.Q. Chen, Programmable and robust static topological solitons in mechanical metamaterials. Nat. Commun. 10(1), 1–8 (2019)

    ADS  Google Scholar 

  48. A. Chetverikov, I. Shepelev, E. Korznikova, A. Kistanov, S. Dmitriev, M. Velarde, Breathing subsonic crowdion in Morse lattices. Comput. Condens. Matter 13, 59–64 (2017)

    Google Scholar 

Download references

Acknowledgements

IASh acknowledges the financial support of the Russian Science Foundation, Grant No 19-72-00109 (simulations). E.A.K. thanks the Council of the President of the Russian Federation for support of Russian scientists, Grant No. MD-3639.2019.2 (writing the manuscript). The work was partly supported by the State assignment of IMSP RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Shepelev.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 3607 KB)

Supplementary material 2 (mp4 19461 KB)

Supplementary material 3 (mp4 19298 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shepelev, I.A., Dmitriev, S.V. & Korznikova, E.A. Evolution of supersonic 2-crowdion clusters in a 3D Morse lattice. Eur. Phys. J. B 94, 71 (2021). https://doi.org/10.1140/epjb/s10051-021-00068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00068-0

Navigation