Skip to main content
Log in

Energy exchange in M-crowdion clusters in 2D Morse lattice

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Dynamics of new class of M-solitons and M-crowdions, here M = 3 is the number of adjacent close-packed atomic rows where the atoms move, are studied in two-dimensional triangular Morse lattice using classical molecular dynamics simulations. 3-solitons/3-crowdions are excited by giving initial velocities to the three atoms in three neighboring close-packed atomic rows along the rows. Different relations between the initial velocities are considered: all three initial velocities are equal, initial velocity for the middle atom is lower than for the outermost atoms, and all three velocities are different. During propagation of a 3-soliton the atoms do not overcome potential barrier and relax back to their original lattice sites. Propagation of a 3-crowdion results in the shift of the atoms to the neighboring lattice sites along the direction of movement. It is found that propagation of 3-soliton/3-crowdion clusters is associated with the energy exchange between the adjacent atomic rows. The ratio between the initial energies, at which the maximum energy exchange occurs, is determined. The energy is transferred from the high-energy atomic rows to the low-energy one. In the case when initial velocities in all three rows are different, the dynamics of 3-soliton/3-crowdion clusters is unstable. Obtained results allow to better understand the dynamics of interstitial defect clusters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Dudarev, D.R. Mason, E. Tarleton, P.W. Ma, A.E. Sand, Nucl. Fusion 58, 126002 (2018)

    ADS  Google Scholar 

  2. A.E. Sand, S.L. Dudarev, K. Nordlund, Europhys. Lett. 103, 46003 (2013)

    ADS  Google Scholar 

  3. X. Yi, M.L. Jenkins, K. Hattar, P.D. Edmondson, S.G. Roberts, Acta Mater. 92, 163 (2015)

    Google Scholar 

  4. Z. Zhang, K. Yabuuchi, A. Kimura, J. Nucl. Mater. 480, 207 (2016)

    ADS  Google Scholar 

  5. T. Koyanagi, N.K. Kumar, T. Hwang, L.M. Garrison, X. Hu, L.L. Snead, Y. Katoh, J. Nucl. Mater. 490, 66 (2017)

    ADS  Google Scholar 

  6. V. Dubinko, J. Micromech. Mol. Phys. 1, 1650006 (2016)

    Google Scholar 

  7. G.M. Poletaev, I.V. Zorya, M.D. Starostenkov, J. Micromech. Mol. Phys. 3, 1850001 (2018)

    Google Scholar 

  8. V.L. Indenbom, J. Exp. Theor. Phys. Lett. 12, 369 (1970)

    Google Scholar 

  9. V.V. Pokropivny, V.V. Skorokhod, A.V. Pokropivny, Model. Simul. Mater. Sci. Eng. 5, 579 (1997)

    ADS  Google Scholar 

  10. M. Kiritani, J. Nucl. Mater. 276, 41 (2000)

    ADS  Google Scholar 

  11. I. Salehinia, D.F. Bahr, Scrip. Mater. 66, 339 (2012)

    Google Scholar 

  12. A. Korbel, W. Bochniak, Int. J. Mech. Sci. 128, 269 (2017)

    Google Scholar 

  13. E.A. Korznikova, S.Y. Mironov, A.V. Korznikov, A.P. Zhilyaev, T.G. Langdon, Mater. Sci. Eng. A 556, 437 (2012)

    Google Scholar 

  14. M. Volosyuk, A. Volosyuk, N. Rokhmanov, Function. Mater. 22, 51 (2015)

    Google Scholar 

  15. H. Mehrer, inDiffusion in solids: fundamentals, methods, materials, diffusion-controlled processes (Springer Science & Business Media, 2007), Vol. 155

  16. J.F.R. Archilla, Y.A. Kosevich, N. Jiménez, V.J. Sánchez-Morcillo, L.M. García-Raffi, Phys. Rev. E 91, 022912 (2015)

    ADS  Google Scholar 

  17. Y.A. Kosevich, R. Khomeriki, S. Ruffo, Europhys. Lett. 66, 21 (2004)

    ADS  Google Scholar 

  18. Y.N. Osetsky, D.J. Bacon, A. Serra, Philos. Mag. Lett. 79, 273 (1999)

    Google Scholar 

  19. S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, D.J. Srolovitz, Phys. Rev. B 66, 220101 (2002)

    ADS  Google Scholar 

  20. H. Abe, N. Sekimura, Y. Yang, J. Nucl. Mater. 323, 220 (2003)

    ADS  Google Scholar 

  21. S.L. Dudarev, Philos. Mag. 83, 3577 (2003)

    ADS  Google Scholar 

  22. Y.N. Osetsky, D.J. Bacon, A. Serra, B.N. Singh, S.I. Golubov, Philos. Mag. 83, 61 (2003)

    ADS  Google Scholar 

  23. D.A. Terentyev, L. Malerba, M. Hou, Phys. Rev. B 75, 104108 (2007)

    ADS  Google Scholar 

  24. S.L. Dudarev, P.W. Ma, Phys. Rev. Mater. 2, 033602 (2018)

    Google Scholar 

  25. P.W. Ma, S.L. Dudarev, Phys. Rev. Mater. 3, 043606 (2019)

    Google Scholar 

  26. H.R. Paneth, Phys. Rev. 80, 708 (1950)

    ADS  Google Scholar 

  27. P.M. Derlet, D. Nguyen-Manh, S.L. Dudarev, Phys. Rev. B 76, 054107 (2007)

    ADS  Google Scholar 

  28. A.M. Kosevich, A.S. Kovalev, Solid State Commun. 12, 763 (1973)

    ADS  Google Scholar 

  29. A.S. Davydov, A.V. Zolotariuk, Phys. Scrip. 30, 426 (1984)

    ADS  Google Scholar 

  30. J. Cuevas, B. Sanchez-Rey, J.C. Eilbeck, F.M. Russell, Discrete Continuous Dyn. Syst. Ser. S 4, 1057 (2011)

    MathSciNet  Google Scholar 

  31. A.P. Chetverikov, I.A. Shepelev, E.A. Korznikova, A.A. Kistanov, S.V. Dmitriev, M. Velarde, Comput. Condensed Matter 13, 59 (2017)

    Google Scholar 

  32. W. Xiao, P.A. Greaney, D.C. Chrzan, Phys. Rev. Lett. 90, 156102 (2003)

    ADS  Google Scholar 

  33. T.I. Mazilova, E.V. Sadanov, V.N. Voyevodin, V.A. Ksenofontov, I.M. Mikhailovskij, Surf. Sci. 669, 10 (2018)

    ADS  Google Scholar 

  34. J.F.R. Archilla, S.M.M. Coelho, F.D. Auret, V.I. Dubinko, V. Hizhnyakov, Physica D 297, 56 (2015)

    ADS  Google Scholar 

  35. P.A. Cherdantsev, I.P. Chernov, Y.A. Timoshnikov, V.A. Korotchenko, A.P. Mamontov, Sov. Phys. Semicond. 18, 1283 (1984)

    Google Scholar 

  36. V.G. Mokerov, S.N. Nikiforova-Denisova, E.N. Ovcharenko, V.P. Panasyuk, V.I. Smirnov, Y.A. Timoshnikov, I.P. Chernov, Sov. Microelectron. 15, 28 (1986)

    Google Scholar 

  37. F.M. Russell, Nature 217, 51 (1968)

    ADS  Google Scholar 

  38. F.M. Russell, Phys. Lett. A 130, 489 (1988)

    ADS  Google Scholar 

  39. F.M. Russell, Int. J. Rad. Appl. Instrum. Part D 15, 41 (1988)

    Google Scholar 

  40. D. Schlöβer, K. Kroneberger, M. Schosnig, M. Russell, K.O. Groeneveld, Radiat. Meas. 23, 209 (1994)

    Google Scholar 

  41. F.M. Russell, J.C. Eilbeck, Europhys. Lett. 78, 10004 (2007)

    ADS  Google Scholar 

  42. K.A. Krylova, E.A. Korznikova, A.S. Semenov, D.V. Bachurin, S.V. Dmitriev, Eur. Phys. J. B 93, 23 (2020)

    ADS  Google Scholar 

  43. M.G. Velarde, J. Comput. Appl. Math. 233, 1432 (2010)

    ADS  MathSciNet  Google Scholar 

  44. Y.A. Kosevich, J. Phys. Conf. Ser. 833, 012021 (2017)

    Google Scholar 

  45. S.V. Dmitriev, N.N. Medvedev, A.P. Chetverikov, K. Zhou, M.G. Velarde, Phys. Status Solidi Rapid Res. Lett. 11, 1770366 (2017)

    ADS  Google Scholar 

  46. S.V. Dmitriev, E.A. Korznikova, A.P. Chetverikov, J. Exp. Theor. Phys. 126, 347 (2018)

    ADS  Google Scholar 

  47. R.I. Babicheva, I. Evazzade, E.A. Korznikova, I.A. Shepelev, K. Zhou, S.V. Dmitriev, Comput. Mater. Sci. 163, 248 (2019)

    Google Scholar 

  48. A. Moradi Marjaneh, D. Saadatmand, I. Evazzade, R.I. Babicheva, E.G. Soboleva, N. Srikanth, K. Zhou, E.A. Korznikova, S.V. Dmitriev, Phys. Rev. E 98, 023003 (2018)

    ADS  Google Scholar 

  49. A.M. Bayazitov, S.V. Dmitriev, P.V. Zakharov, I.A. Shepelev, S.Y. Fomin, E.A. Korznikova, IOP Conf. Ser. Mater. Sci. Eng. 672, 012033 (2019)

    Google Scholar 

  50. E.A. Korznikova, I.A. Shepelev, A.P. Chetverikov, S.V. Dmitriev, S.Y. Fomin, K. Zhou, J. Exp. Theor. Phys. 127, 1009 (2018)

    ADS  Google Scholar 

  51. I.A. Shepelev, E.A. Korznikova, D.V. Bachurin, A.S. Semenov, A.P. Chetverikov, S.V. Dmitriev, Phys. Lett. A 384, 126032 (2020)

    Google Scholar 

  52. P.V. Zakharov, E.A. Korznikova, S.V. Dmitriev, E.G. Ekomasov, K. Zhou, Surf. Sci. 679, 1 (2019)

    ADS  Google Scholar 

  53. E. Barani, E.A. Korznikova, A.P. Chetverikov, K. Zhou, S.V. Dmitriev, Phys. Lett. A 381, 3553 (2017)

    ADS  Google Scholar 

  54. A. Savin, E. Korznikova, S. Dmitriev, Phys. Solid State 57, 2348 (2015)

    ADS  Google Scholar 

  55. L. Bai, N. Srikanth, E.A. Korznikova, J.A. Baimova, S.V. Dmitriev, K. Zhou, Wear 372, 12 (2017)

    Google Scholar 

  56. H.Y. Chen, N.T. Tsou, Comput. Model. Eng. Sci. 120, 319 (2019)

    Google Scholar 

  57. A. Tsukanov, S. Psakhie, Mech. Eng. 14, 269 (2016)

    Google Scholar 

  58. W.J. Lee, Y.C. Lo, A. Yang, K. Chen, N.Y. Chen, Comput. Model. Eng. Sci. 120, 293 (2019)

    Google Scholar 

  59. L. Rysaeva, E. Korznikova, R. Murzaev, D. Abdullina, A. Kudreyko, J. Baimova, D. Lisovenko, S. Dmitriev, Mech. Eng. 18, 1 (2020)

    Google Scholar 

  60. I.A. Shepelev, A.P. Chetverikov, S.V. Dmitriev, E.A. Korznikova, Comput. Mater. Sci. 177, 109549 (2020)

    Google Scholar 

  61. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    ADS  Google Scholar 

  62. J. Bajars, J.C. Eilbeck, B. Leimkuhler, Physica D 301–302, 8 (2015)

    ADS  Google Scholar 

  63. F. Russell, J. Eilbeck, Discrete Cont. Dyn. Syst. Ser. S 4, 1267 (2011)

    Google Scholar 

  64. J.L. Marin, F.M. Russell, J.C. Eilbeck, Phys. Lett. A 281, 21 (2001)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor A. Shepelev.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shepelev, I.A., Bachurin, D.V., Korznikova, E.A. et al. Energy exchange in M-crowdion clusters in 2D Morse lattice. Eur. Phys. J. B 93, 167 (2020). https://doi.org/10.1140/epjb/e2020-10160-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10160-0

Keywords

Navigation