Skip to main content
Log in

Kinematic interaction and condensation factor in two-dimensional quantum Heisenberg ferromagnet

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the influences of Dyson’s kinematic and dynamic interaction on the physical properties of two-dimensional quantum Heisenberg ferromagnet with O(3) rotational symmetry. It is found that the repulsive potential led by dynamic interaction modifies the third large term with \(T^{3}\) in the low-temperature series of specific heat. Under mean-field approximation, the kinematic interaction transforms the occupation-number configuration into a coherent-state configuration and significantly improves the result of modified spin wave theory in the high-temperature limit. In the low-temperature limit, the kinematic-interaction contribution to specific heat is negligibly small. For finite-size systems, it is found that a crossover temperature can be used to characterize the transition to a single-domain-type magnet. In the thermodynamic limit, the condensation factor (the number of zero-mode magnons) dominates the isothermal compressibility of magnon gas although there is not a real phase transition at finite temperatures. The asymptotic behavior of static structure factor depends on the relative size of the spin-wave wavelength with respect to the correlation length.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data included in this study are available upon request by contact with the corresponding author.].

References

  1. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  2. M. Takahashi, Progr. Theor. Phys. Suppl. 87, 233–246 (1986)

    Article  ADS  Google Scholar 

  3. M. Takahashi, Phys. Rev. Lett. 58, 168 (1987)

    Article  ADS  Google Scholar 

  4. M. Takahashi, Jpn. J. Appl. Phys. Suppl. 26–3, 869 (1987)

    Article  ADS  Google Scholar 

  5. M. Takahashi, Progr. Theor. Phys. 83, 815–818 (1990)

    Article  ADS  Google Scholar 

  6. F.J. Dyson, Phys. Rev. 102, 1217–1230 (1956)

    Article  MathSciNet  ADS  Google Scholar 

  7. F.J. Dyson, Phys. Rev. 102, 1230–1244 (1956)

    Article  MathSciNet  ADS  Google Scholar 

  8. L.V. Popovich, M.V. Medvedev, Phys. Lett. A 247, 1856 (1998)

    Article  Google Scholar 

  9. A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer, Berlin, 1994), p. 187

    Book  Google Scholar 

  10. D.P. Arovas, A. Auerbach, Phys. Rev. B 38, 316 (1988)

    Article  ADS  Google Scholar 

  11. S.V. Maleev, JETP 6, 776 (1958)

    ADS  Google Scholar 

  12. C.P. Hofmann, Phys. Rev. B 86, 054409 (2012)

    Article  ADS  Google Scholar 

  13. S. Tang, J.E. Hirsch, Phys. Rev. B 39, 4548 (1989)

    Article  ADS  Google Scholar 

  14. S. Sarker, C. Jayaprakash, H.R. Krishnamurthy, M. Ma, Phys. Rev. B 40, 5028 (1989)

    Article  ADS  Google Scholar 

  15. P. Kopietz, S. Charavarty, Phys. Rev. B 40, 4858 (1989)

    Article  ADS  Google Scholar 

  16. A. Chubukov, Phys. Rev. B 44, 12318 (1991)

    Article  ADS  Google Scholar 

  17. F. Suziki, N. Shibata, C. Ishii, J. Phys. Soc. Jpn. 63, 1539 (1994)

    Article  ADS  Google Scholar 

  18. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 7th edn. (A&P, New York, 2007), p. 860

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (Grant no. 61565013).

Author information

Authors and Affiliations

Authors

Contributions

The author (BX) is responsible for the whole content of the paper.

Corresponding author

Correspondence to Bao Xu.

Appendices

Appendix A: Properties of \(f_{L}(x)\)

Equation (6) in the text defines function \(f_{L}(x)\) with non-negative integer L

$$\begin{aligned} f_{L}(x) = e^{-x} \sum _{n=L+1}^{\infty } \frac{ x^{n} }{\Gamma (n+1)} \end{aligned}$$
(A.1)

where, \(\Gamma (z)\) is the Gamma-function. The n-order derivative of \(f_{L}(x)\) with respect to x satisfies the following recurrence relation

$$\begin{aligned} \frac{ \partial ^n f_{L}(x) }{ \partial x^n} = \sum _{j=0}^{n} \frac{n!}{j!(n-j)!}(-1)^{n-j}f_{L-j}(x) \end{aligned}$$
(A.2)

Appendix B: Coherent state configuration

In the occupation-number configuration, the trace in the partition function can be rewritten as

$$\begin{aligned} Z_\mathrm{mf}= & {} \sum _{ \{n_k\} }{\langle {\{n_k\}}|} \sqrt{ \hat{P}_\mathrm{mf} } e^{-\beta \hat{H}_0 } \sqrt{ \hat{P}_\mathrm{mf}} {|{\{n_k\}}\rangle } \nonumber \\= & {} \sum _{ \{\Omega _k\} } {\langle { \{\Omega _k\} }|} e^{-\beta \hat{H}_0 } {|{ \{\Omega _k\} }\rangle } \end{aligned}$$
(B.1)

The new states read as

$$\begin{aligned} {|{ \{\Omega _k\} }\rangle } = \sqrt{ \hat{P}_\mathrm{mf}} \sum _{ \{n_k\} } \prod _{k} {|{n_k}\rangle } = \prod _{k} {|{\Omega _k}\rangle } \end{aligned}$$
(B.2)

where

$$\begin{aligned} {|{\Omega _k}\rangle } = e^{\frac{C}{2} } \sum _{n_k=0}^{\infty }(1+D)^{\frac{1}{2}n_k} {|{n_k}\rangle } \ \end{aligned}$$
(B.3)

with \(-1< D <0\). The absent normalization factor \(A_k\) in the above expression can be determined from \(\left\langle \Omega _k|\Omega _k\right\rangle =1\) and leads to

$$\begin{aligned} A_k = e^{ -\frac{C}{2} } \sqrt{|D|} \end{aligned}$$
(B.4)

It is noticed that the kinematic interaction under mean-field approximation maps the occupation-number configuration onto a coherent-state configuration. The mean-field approximation completely suppresses the fluctuations in momentum space, which corresponds to a common chemical potential shared by all \(\mathbf {k}\)-states.

Appendix C: Solution to the saddle-point equations

In deducing the saddle-point Eq. (22), the following relation is used

$$\begin{aligned} \frac{ \partial n }{ \partial \Delta } = \frac{ \partial n }{ \partial D} \frac{ \partial D }{ \partial \Delta } \end{aligned}$$
(C.1)

where,

$$\begin{aligned} \frac{ \partial n }{ \partial D} = \frac{1}{N}\sum _{k} \frac{1}{ \left[ e^{\beta \epsilon _k} - (1+D)\right] ^2} \end{aligned}$$
(C.2)

\(\frac{ \partial D }{ \partial \Delta }\) is the first-order partial derivative of D with respect to \(\Delta \) and explicitly written as

$$\begin{aligned} \frac{ \partial D }{ \partial \Delta } \!=\! \frac{ e^{-\Delta } }{L!} \frac{ 1-f_{L-1}(\Delta ) }{[1-f_{L}(\Delta )]^2} \left( \Delta \!-\! L\frac{1-f_L(\Delta )}{1-f_{L\!-\!1}(\Delta ) }\right) \Delta ^{L-1}\nonumber \\ \end{aligned}$$
(C.3)

Since the expression in the round bracket is never equal to zero, equation \(\frac{ \partial D }{ \partial \Delta }=0\) has the unique solution \(\Delta = 0\) while \(L>1\).

Appendix D: Density of state

Using the following equation

$$\begin{aligned} \rho (x) = \frac{1}{N} \sum _{\mathbf {k} } \delta (x-\gamma _{ \mathbf {k} }) = \frac{2}{\pi ^2} K( \sqrt{1-x^2} ) \end{aligned}$$
(D.1)

where K(x) is the complete elliptic function of the first kind [18]. The density of state reads

$$\begin{aligned} g_2 (x)= & {} \frac{1}{N}\sum _{ \mathbf {k} }\delta (x-\epsilon _k) \nonumber \\= & {} \frac{4}{\pi ^2}\frac{1}{ \epsilon _\mathrm{max} } K\left( 2\sqrt{ \frac{x}{\epsilon _\mathrm{max}} -\frac{x^2}{\epsilon _\mathrm{max}^2} }\right) \end{aligned}$$
(D.2)

One can expand K(x) in terms of small x as

$$\begin{aligned} K(x) = \frac{\pi }{2} \sum _{n=0}^{\infty } \left[ \frac{ (2n-1)!! }{ (2n)!! }\right] ^{2} x^{2n} \end{aligned}$$
(D.3)

and obtain Eq. (38) in the text.

Appendix E: Magnetic susceptibility

The correlation function with \(i\ne j\) can be written as

$$\begin{aligned} \left\langle \mathbf {S}_i\cdot \mathbf {S}_j \right\rangle =\left\{ \frac{1}{N}\sum _{k}e^{i\mathbf {k}\cdot (\mathbf {r}_j-\mathbf {r}_i)}\tilde{n}_k \right\} ^2,\quad i\ne j \end{aligned}$$
(E.1)

For the case with \(i= j\), \(\mathbf {S}_i\cdot \mathbf {S}_j =S(S+1)\). The magnetic susceptibility reads

$$\begin{aligned} \chi= & {} \frac{g^2\mu _\mathrm{B}^2}{k_\mathrm{B}T}\sum _{i,j}\left\langle \mathbf {S}_i^{z}\cdot \mathbf {S}_j^{z} \right\rangle \nonumber \\= & {} \frac{g^2\mu _\mathrm{B}^2}{3k_\mathrm{B}T}\sum _{i,j}\left\langle \mathbf {S}_i\cdot \mathbf {S}_j \right\rangle \nonumber \\= & {} \frac{g^2\mu _\mathrm{B}^2}{3k_\mathrm{B}T} \frac{1}{N} \sum _{k} \tilde{n}_k \left( 1 + \tilde{n}_k \right) \end{aligned}$$
(E.2)

The second expression uses the symmetrization of correlation function for the Heisenberg systems with O(3) symmetry.

Appendix F: Integral formula used in calculating the static structure factor

According to the integral formula

$$\begin{aligned} \int _{0}^{\pi } \frac{ {\mathrm{d}}{\theta } }{a+b\cos \theta } = \frac{\pi }{\sqrt{a^2-b^2}}, a>b>0 \end{aligned}$$
(F.1)

the equation (85) reduces to

$$\begin{aligned} I = \int _{ (2\xi )^{2} }^{ k_c^2+(2\xi )^{2} } \frac{ {\mathrm{d}}{y} }{y\sqrt{a+by+cy^2} } \end{aligned}$$
(F.2)

where

$$\begin{aligned} a= & {} q^4 + q^2\xi ^{-2},\\ b= & {} -2q^2,\\ c= & {} 1, \end{aligned}$$

Introducing the following parameter

$$\begin{aligned} \Delta = 4ac - b^2 = 4q^2\xi ^{-2} \end{aligned}$$

and using the integral formula

$$\begin{aligned} \int \frac{ {\mathrm{d}}{y} }{y\sqrt{a+by+cy^2} }= & {} -\frac{1}{ \sqrt{a} } \mathrm {arcsinh}\left( \frac{2a+bx}{x\sqrt{\Delta }}\right) , \nonumber \\&a>0, ~~ \Delta >0 \end{aligned}$$
(F.3)

we obtain the expression (86) in the text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, B. Kinematic interaction and condensation factor in two-dimensional quantum Heisenberg ferromagnet. Eur. Phys. J. B 94, 5 (2021). https://doi.org/10.1140/epjb/s10051-020-00041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00041-3

Navigation