Skip to main content
Log in

Magnetic-field induced multi-step transitions in ferromagnetic spin-crossover solids within the BEG model

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study by means of the 2D Blume–Emery–Griffiths (BEG) spin-1 model, spin-crossover (SCO) and prussian blue analogs (PBAs) solids. In this model, the spin states, which can be high-spin (HS) or low-spin (LS), interact magnetically and elastically with their nearest neighbors. To account for the volume change, accompanying the spin transition phenomenon, all interactions through the lattice are assumed as temperature-dependent. In addition, the system is subject to a variable magnetic field lifting the degeneracy in the HS state. A stochastic cooperative dynamics of this BEG-like Hamiltonian, describing the equilibrium and nonequilibrium properties of ferromagnetic spin-crossover solids, is derived from the Glauber approach, with appropriate Arrhenius microscopic transition rates. The model generates under the magnetic field, sigmoidal relaxation and a hysteresis phenomenon of the HS fraction, as well as multistep behavior of the magnetization. These behaviors open the way to new route of multi-stable systems, desired in multi-byte electronics.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The generated data are obtained with Fortran Code based on evolving system equations and help us to display all figures reported in this paper which are available on request by T. D. OKE.]

References

  1. P. Gütlich, H.A. Goodwin, Spin-crossover in transition metal compounds\(I\) , \(II\)and\(III\), vol. 233–235 (Berlin, Springer, 2004)

  2. J.H. Ammeter, Nov. J. Chem. 4, 631 (1980)

    Google Scholar 

  3. S. Ohkoshi, K. Hashimoto, J. Am. Chem. Soc. 121, 10591 (1999)

    Article  Google Scholar 

  4. S. Ohkoshi, S. Ikeda, T. Hozumi, T. Kashiwagi, K. Hashimoto, J. Am. Chem. Soc. 128, 5320 (2006)

    Article  Google Scholar 

  5. S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, H. Tokoro, Nat. Chem. 3, 564 (2011)

    Article  Google Scholar 

  6. P. Gütlich, A. Hauser, H. Spiering, Angew. Chem. Int. Ed. 33, 2024 (1994)

    Article  Google Scholar 

  7. J.M. Herrera, V. Marvand, M. Verdager, J. Marrot, M. Kalisz, C. Mathoniere, Angew. Chem. Int. Ed. 43, 5468 (2004)

    Article  Google Scholar 

  8. N. Nègre, C. Conséjo, M. Goiran, A. Bousseksou, F. Varret, J.P. Tuchagues, R. Barbaste, S. Askénazy, J.G. Haasnoot, Phys. B 294–295, 91 (2001)

    Article  ADS  Google Scholar 

  9. H. Tokoro, S.-I. Ohkoshi, K. Hashimoto, Appl. Phys. Lett. 82, 1245 (2003)

    Article  ADS  Google Scholar 

  10. F. Varret, K. Boukheddaden, C. Chong, A. Goujon, B. Gillon, J. Jeftic, A. Hausser, Eur. Phys. Lett. 77, 30007 (2007)

    Article  ADS  Google Scholar 

  11. D.A. Pejakovíc, J.L. Mauson, C. Kitamura, J.S. Miller, A.J. Epstein, Polyhedron 20, 1435 (2001)

    Article  Google Scholar 

  12. K. Kato, Y. Moritomo, M. Takata, M. Sakata, M. Umekawa, N. Hamada, S. Ohkoshi, H. Tokoro, K. Hashimoto, Phys. Lett. 91, 255502 (2003)

    Article  Google Scholar 

  13. H. Banerjee, S. Chakraborty, T. Saha-Dasgupta, Inorganics 5, 47 (2017)

    Article  Google Scholar 

  14. A. Gîndulescu, A. Rotaru, J. Linares, M. Dimian, J. Naser, J. Phys. Conf. Ser. 268, 012007 (2011)

    Article  Google Scholar 

  15. M. Nishino, S. Miyashita, P.A. Rikvold, Phys. Rev. B 96, 144425 (2017)

    Article  ADS  Google Scholar 

  16. C. Enashescu, L. Stoleriu, A. Stancu, A. Hausser, Phys. Rev. B 82, 104114 (2010)

    Article  ADS  Google Scholar 

  17. M. Sorai, S. Seki, J. Phys. Chem. Solids 35, 555 (1974)

    Article  ADS  Google Scholar 

  18. M.M. Dîrtu, C. Neuhausen, A.D. Naik, A. Rotaru, L. Spinu, Y. Garcia, Inorg. Chem. 49, 5723 (2010)

    Article  Google Scholar 

  19. W. Nicolazzi, J. Pavlik, S. Bedoui, G. Molnár, A. Bousseksou, Eur. Phys. J. Spec. Topics 222, 1137 (2013)

    Article  ADS  Google Scholar 

  20. M. Paez-Espejo, M. Sy, K. Boukheddaden, J. Am. Chem. Soc. 138, 3202 (2016)

    Article  Google Scholar 

  21. M.A. Halcrow, Spin-Crossover Materials: Properties and Applications (Wiley, New York, 2013)

    Book  Google Scholar 

  22. P. Gütlich, A.B. Gasper, Y. Garcia, Beilstein J. Org. Chem. 9, 342 (2013)

  23. C.M. Quintero, G. Félix, I. Suleimanov, J.S. Costa, G. Molnár, L. Salmon, W. Nicolazzi, A. Bousseksou, Beilstein J. Nanotechnol. 5, 2230 (2014)

    Article  Google Scholar 

  24. E. König, Struct. Bond. 76, 51 (1991)

    Article  Google Scholar 

  25. H. Spiering, N. Willenbacher, J. Phys. Condens. Matter 1, 10089 (1989)

    Article  ADS  Google Scholar 

  26. Y. Ogawa, A. Mino, S. Keshihara, K. Koshino, T. Ogawa, C. Urano, H. Takagi, Phys. Rev. lett. 84, 3181 (2000)

    Article  ADS  Google Scholar 

  27. K. Boukheddaden, J. Linares, H. Spiering, F. Varret, Eur. Phys. J. B 15, 317 (2000)

    Article  ADS  Google Scholar 

  28. K. Boukheddaden, I. Shteto, B. Hôo, F. Varret, Phys. Rev. B 62, 14796 (2000)

    Article  ADS  Google Scholar 

  29. K. Boukheddaden, I. Shteto, B. Hôo, F. Varret, Phys. Rev. B 62, 14806 (2000)

    Article  ADS  Google Scholar 

  30. M. Nishino, S. Miyashita, Phys. Rev. B 63, 174404 (2001)

    Article  ADS  Google Scholar 

  31. M. Nishino, K. Boukheddaden, S. Miyashita, F. Varret, Phys. Rev. B 72, 064452 (2005)

    Article  ADS  Google Scholar 

  32. K. Boukheddaden, M. Nishino, S. Miyashita, F. Varret, Phys. Rev. B 72, 014467 (2005)

    Article  ADS  Google Scholar 

  33. H. Watanabe, N. Bréfuel, S. Mouri, J.-P. Tuchagues, E. Collet, and Tanaka. Eur. Phys. Lett. 96, 17004 (2011)

  34. K. Boukheddaden, M. Sy, M. Paez-Espejo, A. Slimani, F. Varret, Phys. B 486, 187 (2016)

    Article  ADS  Google Scholar 

  35. M. Paez-Espejo, M. Sy, F. Varret, K. Boukheddaden, Phys. Rev. B 89, 024306 (2014)

    Article  ADS  Google Scholar 

  36. C. Chong, F. Varret, K. Boukheddaden, Phys. Rev. B 81, 014104 (2010)

    Article  ADS  Google Scholar 

  37. C. Enachescu, R. Tanasa, A. Stancu, F. Varret, J. Linares, E. Codjovi, Phys. Rev. B 72, 054413 (2005)

    Article  ADS  Google Scholar 

  38. M. Sy, D. Garrot, A. Slimani, M. Paez-Espejo, F. Varret, K. Boukheddaden, Angew. Chem. 55, 1755 (2016)

    Article  Google Scholar 

  39. K. Boukheddaden, Eur. J. Inorg. Chem. (2014). https://doi.org/10.1002/ejic.201201093

  40. B. Hôo, K. Boukheddaden, F. Varret, Eur. Phys. J. B 17, 449 (2000)

    Article  ADS  Google Scholar 

  41. A. Slimani, F. Varret, K. Boukheddaden, D. Garrot, H. Oubouchou, S. Kaizaki, Phys. Rev. Lett. 110, 087208 (2013)

    Article  ADS  Google Scholar 

  42. H. Romstedt, A. Hauser, H. Spiering, J. Phys. Chem. Solids 59, 265 (1998)

    Article  Google Scholar 

  43. K. Boukheddaden, F. Varret, S. Salinke, J. Linares, E. Codjovi, Phase Trans. 75, 733 (2002)

    Article  Google Scholar 

  44. M. Paez-Espejo, M. Sy, F. Varret, K. Boukheddaden, Phys. Rev. 89, 024306 (2014)

    Article  ADS  Google Scholar 

  45. S. Mouri, K. Tanaka, S. Bonhommeau, N.O. Moussa, G. Molnár, A. Bousseksou, Phys. Rev. B 78, 17308 (2008)

    Article  Google Scholar 

  46. A. Bousseksou, J. Nasser, J. Linares, K. Boukheddaden, F. Varret, J. Phys. I 2, 1381 (1992)

    Google Scholar 

  47. A. Bousseksou, F. Varret, J. Nasser, J. Phys. I 3, 1463 (1993)

    Google Scholar 

  48. H. Bolvin, Chem. Phys. 211, 101 (1996)

    Article  Google Scholar 

  49. J. Pavlik, W. Nicolazzi, G. Molnár, R. Boc̆a, A. Bousseksou, Eur. Phys. J. B 86, 292, (2013)

  50. I. Gudyma, V. Ivashko, J. Linares, J. Appl. Phys. 116, 173509 (2014)

  51. M. Nishino, S. Miyashita, K. Boukheddaden, J. Chem. Phys. 118, 4594 (2003)

    Article  ADS  Google Scholar 

  52. J. Wajnflasz, Phys. Status Solidi B 40, 537 (1970)

    Article  ADS  Google Scholar 

  53. J.A. Naser, Eur. Phys. J. B 21, 3 (2001)

    Article  ADS  Google Scholar 

  54. J.A. Nasser, S. Topçu, L. Chassagne, M. Wakim, B. Bennali, J. Linares, Y. Alayli, Eur. Phys. J. B 83, 115 (2011)

    Article  ADS  Google Scholar 

  55. A. Rotaru, A. Carmona, F. Combaud, J. Linares, A. Stancu, J. Nasser, Polyhedron 28, 1684 (2009)

    Article  Google Scholar 

  56. A. Rotaru, J. Linares, S. Mordelet, A. Stancu, J. Nasser, J. Appl. Phys. 106, 043507 (2009)

    Article  ADS  Google Scholar 

  57. J.A. Nasser, Eur. Phys. B 48, 19 (2009)

    Article  ADS  Google Scholar 

  58. A. Rotaru, J. Linares, E. Codjovi, J. Nasser, A. Stancu, J. Appl. Phys. 103, 07B908 (2008)

    Article  Google Scholar 

  59. A. Slimani, K. Boukheddaden, K. Yamashita, Phys. Rev. B 92, 014111 (2015)

    Article  ADS  Google Scholar 

  60. M. Nishino, S. Miyashita, Phys. Rev. B 88, 014108 (2013)

    Article  ADS  Google Scholar 

  61. K. Boukheddaden, M. Nishino, S. Miyashita, Phys. Rev. B 75, 094112 (2007)

    Article  ADS  Google Scholar 

  62. J.A. Nasser, K. Boukheddaden, J. Linares, Eur. Phys. J B 39, 219 (2004)

    Article  ADS  Google Scholar 

  63. T.D. Oke, F. Hontinfinde, K. Boukheddaden, Eur. Phys. J. B 86, 271 (2013)

    Article  ADS  Google Scholar 

  64. T.D. Oke, F. Hontinfinde, K. Boukheddaden, Appl. Phys. A 120, 309 (2015)

    Article  ADS  Google Scholar 

  65. T.D. Oke, F. Hontinfinde, K. Boukheddaden, Comput. Condens. Matter 9, 27 (2016)

    Article  Google Scholar 

  66. M. Nishino, K. Boukheddaden, S. Miyashita, F. Varret, Polyhedron 24, 2852 (2005)

    Article  Google Scholar 

  67. M. Nishino, K. Boukheddaden, S. Miyashita, F. Varret, Phys. Rev. B 68, 224402 (2003) (references therein)

  68. S.B. Ogou, T.D. Oke, F. Hontinfinde, K. Boukheddaden, Adv. Theory Simul. 2, 1800192 (2019)

    Article  Google Scholar 

  69. K. Boukheddaden, S. Miyashita, M. Nishino, Phys. Rev. Lett. 100, 177206 (2008)

    Article  ADS  Google Scholar 

  70. G. D’Avino, A. Painelli, K. Boukheddaden, Phys. Rev. B 84, 104119 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Linares for fruitful discussions on the present results. T.D. OKE acknowledges financial support from the “Groupe d’Etudes de la Matière Condensée” (GEMaC) of the “Université de Versailles Saint-Quentin” (UVSQ) and CNRS during a visit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Oke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oke, T.D., Ndiaye, M., Hontinfinde, F. et al. Magnetic-field induced multi-step transitions in ferromagnetic spin-crossover solids within the BEG model. Eur. Phys. J. B 94, 38 (2021). https://doi.org/10.1140/epjb/s10051-020-00027-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00027-1

Navigation