Skip to main content
Log in

Cationic and anionic composition-dependent mechanical and thermal properties of zinc-blende specimens under \({\hbox {Mg}}_{x} {\hbox {Zn}}_{1\hbox {-}x} {\hbox {S}}_{y} {\hbox {Se}}_{1\hbox {-}y}\) quaternary system: calculations with density functional FP-LAPW scheme

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Elastic and thermal properties of zinc-blende \({\hbox {Mg}}_{x} {\hbox {Zn}}_{1\hbox {-}x} {\hbox {S}}_{y} {\hbox {Se}}_{1\hbox {-}y}\) quaternary alloys and their constituent binary/ternary compounds have been computed through first principles calculations. Elastic stiffness constants of specimens have been increased almost linearly with increasing sulfur composition at any fixed magnesium composition, while reverse trends have been observed with increasing magnesium composition at any fixed sulfur composition in each binary–ternary/ternary–quaternary system. Hardness of specimens has been increased almost linearly with increasing sulfur composition at any fixed magnesium composition, while it has been decreased with increasing magnesium composition at any fixed sulfur composition in each system. Mechanical stability, elastic anisotropy, compressibility, ductility and plasticity have been observed in each compound. Mixture of covalent and ionic bonding with prominent role of covalent nature, dominating role of bond bending over stretching and central nature of interatomic forces have been investigated in each compound. Interaction between the atoms in any compound has been observed to be anharmonic in nature via calculated Gruneisen parameter. Computed Debye temperature, Debye frequency, thermal conductivity and melting temperature of all the specimens have also been reported.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data obtained from our present calculations are presented in different Tables: 1-6 of the Manuscript. There is no more data to be deposited.]

References

  1. R.J. Nelmes, M.I. McMahon, Structural Transitions in the Group IV, III–V, and II–VI Semiconductors under Pressure. In High Pressure in Semiconductor Physics I, ed. by T. Suski, W. Paul, vol. 54 (Academic press, New York, 1998)

  2. L. Konczenwicz, P. Bigenwal, T. Cloitre, M. Chibane, R. Ricou, P. Testuo, O. Briot, R.L. Aulombard, J. Cryst. Growth 159, 117 (1996)

    ADS  Google Scholar 

  3. K. Watanabe, M.Th. Litz, M. Korn, W. Ossau, A. Waag, G. Landwehr, U. Schussler, J. Appl. Phys. 81, 451 (1997)

  4. H. Okuyama, K. Nakano, T. Miyajima, K. Akimoto, J. Cryst. Growth 117, 139 (1992)

    ADS  Google Scholar 

  5. B. Jobst, D. Hommel, U. Lunz, T. Gerhard, G. Landwehr, Appl. Phys. Lett. 69, 97 (1996)

    ADS  Google Scholar 

  6. W.H. Strehlow, E.L. Cook, J. Phys. Chem. Ref. Data 2, 163 (1973)

    ADS  Google Scholar 

  7. J. Wang, M. Isshiki, in Wide-Band-gap II-VI Semiconductors: Growth and properties, Springer Handbook of Electronic and Photonic Materials (Springer, Boston, 2006)

    Google Scholar 

  8. T. Ohta, J. Opto Electron Adv. Mater. 3, 609 (2001)

    Google Scholar 

  9. J.K. Furdyna, J. Appl. Phys. 64, R29 (1988)

    ADS  Google Scholar 

  10. M.C. Tamargo, M.J.S.P. Brasil, R.E. Nahory, R.J. Martin, A.L. Weaver, H.L. Gilchrist, Semicond. Sci. Technol. 6, A8 (1991)

    ADS  Google Scholar 

  11. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, Progr. Mater. Sci. 56, 175 (2011)

    Google Scholar 

  12. M.A. Hasse, J. Qui, J.M. De Puydt, H. Cheng, Appl. Phys. Lett. 59, 1272 (1991)

    ADS  Google Scholar 

  13. S. Albin, J.D. Satira, D.L. Livingston, T.A. Shull, Jpn. J. Appl. Phys. 31, 715 (1992)

    ADS  Google Scholar 

  14. M.W. Wang, M.C. Phillips, J.F. Swenberg, E.T. Yu, J.O. McCaldin, T.C. McGill, J. Appl. Phys. 73, 4660 (1993)

    ADS  Google Scholar 

  15. M.W. Wang, J.F. Swenberg, M.C. Phillips, E.T. Yu, J.O. McCaldin, R.W. Grant, T.C. McGill, Appl. Phys. Lett. 64, 3455 (1994)

    ADS  Google Scholar 

  16. D. Berlincourt, H. Jafee, L.R. Shlozawa, Phys. Rev. 129, 1009 (1963)

    ADS  Google Scholar 

  17. B.H. Lee, J. Appl. Phys. 41, 2984 (1970a)

    ADS  Google Scholar 

  18. B.H. Lee, J. Appl. Phys. 41, 2988 (1970b)

    ADS  Google Scholar 

  19. W.H. Gust, J. Appl. Phys. 53, 4843 (1982)

    ADS  Google Scholar 

  20. C.G. Hodgins, J.C. Irwin, Phys. Stat. Sol. A 28, 647 (1975)

    ADS  Google Scholar 

  21. J.C. Phillips, Rev. Mod. Phys. 42, 317 (1970)

    ADS  Google Scholar 

  22. N. Vagelatos, D. Wehe, J.S. King, J. Chem. Phys. 50, 3613 (1974)

    ADS  Google Scholar 

  23. O. Medelung (ed.), in Landolt Bornstein: Numerical Data and Functional Relationship in Science and Technology, vol. 17b (Springer, Berlin, 1982)

    Google Scholar 

  24. X.J. Chen, A. Mintz, J.S. Hu, X.L. Hua, J. Zinck, W.A. Goddard III, J. Vaccum Sci. Technol. B 13, 1715 (1995)

    Google Scholar 

  25. G. Murtaza, N. Ullah, A. Rauf, R. Khenata, S.B. Omran, M. Sajjad, A. Waheed, Mater. Sci. Semicond. Process. 30, 462 (2015)

    Google Scholar 

  26. M. Debbarma, U. Sarkar, B. Debnath, D. Ghosh, S. Chanda, R. Bhattacharjee, S. Chattopadhyaya, J. Alloys Comp. 748, 446 (2018)

    Google Scholar 

  27. S. Duman, S. Bagci, H.M. Tutuncu, G.P. Srivastava, Phys. Rev. B 73, 205201 (2006)

    ADS  Google Scholar 

  28. L. Tairi, S. Touam, A. Boumaza, M. Boukhtouta, H. Meradji, S. Ghemid, S.B. Omran, F.E.H. Hassan, R. Khenata, Phase Trans. 90, 929 (2017)

    Google Scholar 

  29. F.E.H. Hassan, B. Amrani, J. Phys. Cond. Matter 19, 386234 (2007)

    Google Scholar 

  30. R.M. Martin, Phys. Rev. B 1, 4005 (1970)

    ADS  Google Scholar 

  31. S. Kamran, K. Chen, L. Chen, Phys. Rev. B 77, 094109 (2008)

    ADS  Google Scholar 

  32. R.K. Singh, S. Singh, Phys. Stat. Sol. B 140, 407 (1987)

    ADS  Google Scholar 

  33. R. Khenata, A. Bouhemadou, M. Sahnoun, A.H. Reshak, H. Baltache, M. Rabah, Comp. Mater. Sci. 38, 29 (2006)

    Google Scholar 

  34. R.A. Casali, N.E. Christensen, Sol. Stat. Commun. 108, 793 (1998)

    ADS  Google Scholar 

  35. M. Bilal, M. Shafiq, I. Ahmad, I. Khan, J. Semicond. 35, 0720011 (2014)

    Google Scholar 

  36. F. Drief, A. Tadjer, D. Mesri, H. Aourag, Catal. Today 89, 343 (2004)

    Google Scholar 

  37. D. Rached, N. Benkhettou, B. Soudini, B. Abbar, N. Sekkal, M. Driz, Phys. Status Solidi B 240, 565 (2003)

    ADS  Google Scholar 

  38. P.K. Jha, M. Talati, Phys. Stat. Sol. B 239, 291 (2003)

    ADS  Google Scholar 

  39. P.F. Yuan, Z.J. Ding, Phys. B 403, 1996 (2008)

    ADS  Google Scholar 

  40. K. Bouamama, P. Djemia, Mod. Phys. Lett. B 21, 249 (2007)

    ADS  Google Scholar 

  41. A.R. Jivani, A.R. Jani, Int. J. Mod. Phys. 29, 1550132 (2015)

    ADS  Google Scholar 

  42. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    ADS  Google Scholar 

  43. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    ADS  Google Scholar 

  44. A.H. Reshak, Sci. Rep. 7, 46415 (2017). https://doi.org/10.1038/srep46415

    Article  ADS  Google Scholar 

  45. A.H. Reshak, Phys. Chem. Chem. Phys. 16, 10558–10565 (2014a)

    Google Scholar 

  46. G.E. Davydyuk, O.Y. Khyzhun, A.H. Reshak, H. Kamarudind, G.L. Myronchuk, S.P. Danylchuk, A.O. Fedorchuk, L.V. Piskach, MYu. Mozolyuk, O.V. Parasyuk, Phys. Chem. Chem. Phys. 15, 6965–6972 (2013)

  47. A.H. Reshak, Y.M. Kogut, A.O. Fedorchuk, O.V. Zamuruyeva, G.L. Myronchuk, O.V. Parasyuk, H. Kamarudin, S. Auluck, K.J. Plucinski, J. Bila, Phys. Chem. Chem. Phys. 15, 18979–18986 (2013)

    Google Scholar 

  48. A.H. Reshak, D. Stys, S. Auluck, I.V. Kityk, Phys. Chem. Chem. Phys. 13, 2945–2952 (2011)

    Google Scholar 

  49. A.H. Reshak, RSC Adv. 4, 39565–39571 (2014b)

    ADS  Google Scholar 

  50. A.H. Reshak, RSC Adv. 4, 63137–63142 (2014c)

    ADS  Google Scholar 

  51. O.K. Andersen, Phys. Rev. B 42, 3063 (1975)

    Google Scholar 

  52. P. Blaha, K. Schwarz, G.H. Madsen, D. Kbasnicka, J. Luitz, in FP-LAPW+lo Program for Calculating Crystal Properties, ed. by K. Schwarz (Vienna University of Technology, Vienna, 2001)

  53. M. Jamal, S.J. Asadabadi, I. Ahmed, H.A.R. Aliabad, Comp. Mater. Sci. 95, 592 (2014). http://www.wien2k.at/reg_user/unsupported/cubic-elast

  54. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  55. A. Kokalj, Comp. Mat. Sci. 28, 155 (2003). http://www.xcrysden.org/

  56. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    ADS  Google Scholar 

  57. F. Mouhat, F.X. Coudert, Phys. Rev. B 90, 224104 (2014)

    ADS  Google Scholar 

  58. M. Born, K. Huang, in Dynamics Theory of Crystal Lattices (Oxford University Press, Oxford, 1954)

    MATH  Google Scholar 

  59. W. Voigt, Ann. Phys. 38, 573 (1889)

    Google Scholar 

  60. A. Reuss, Z. Angew, Math. Phys. 9, 49 (1929)

    Google Scholar 

  61. R. Hill, Proc. Phys. Soc. Lond. A 65, 349 (1952)

    ADS  Google Scholar 

  62. H.M. Ledbetter, J. Appl. Phys. 44, 1451 (1973)

    ADS  Google Scholar 

  63. Z. Hashin, S. Shtrikman, J. Mech. Phys. Solids 10, 343 (1962)

    ADS  MathSciNet  Google Scholar 

  64. D. Teter, MRS Bull. 23, 22 (1998)

    Google Scholar 

  65. X.Q. Chen, H.Y. Niu, D.Z. Li, Y.Y. Li, Intermetallics 19, 1275 (2011)

    Google Scholar 

  66. D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992)

    Google Scholar 

  67. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Google Scholar 

  68. I.N. Frantsevich, F.F. Voronov, S.A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Naukova Dumka, Kiev, 1983)

    Google Scholar 

  69. L. Kleinman, Phys. Rev. 128, 2614 (1962)

    ADS  Google Scholar 

  70. D.H. Chung, W.R. Buessem, in Anisotropy in Single-crystal Refractory Compounds: Proceedings (Plenum Press, New York, 1968)

    Google Scholar 

  71. S. Li, S. Li, X. Ju, J. Alloys Comp. 695, 2916 (2017)

    Google Scholar 

  72. R.Y. Potter, J. Phys. Chem. Solids 3, 223 (1957)

    ADS  Google Scholar 

  73. S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors (Wiley, West Sussex, 2005)

    Google Scholar 

  74. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Appl. Phys. 84, 4891 (1998)

    ADS  Google Scholar 

  75. O.L. Anderson, J. Phys. Chem. Sol. 24, 909 (1963)

    ADS  Google Scholar 

  76. W. Huang, L. Yang, Can. J. Phys. 93, 1 (2015)

    Google Scholar 

  77. X.-D. Zhang, Z.-F. Hou, Z.-Y. Jiang, Y.-Q. Hou, Phys. B 406, 2196 (2011)

    ADS  Google Scholar 

  78. V.N. Belomestnykh, Tech. Phys. Lett. 30, 91 (2004)

    ADS  Google Scholar 

  79. D.R. Clarke, S.R. Phillpot, Materialstoday 8, 22 (2005)

    Google Scholar 

  80. D.R. Clarke, Surf. Coat. Technol. 67, 163 (2003)

    Google Scholar 

  81. B. Liu, J.Y. Wang, F.Z. Li, Y.C. Zhou, Acta Mater. 58, 4369 (2010)

    ADS  Google Scholar 

  82. M.E. Fine, L.D. Brown, H.L. Marcus, Scr. Metall. 18, 951 (1984)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the UGC, Govt. of India for financial support to carry out this research work through UGC-SAP program 2016 [Ref. No F.530/23/DRS-I/2018 (SAP-I)].

Author information

Authors and Affiliations

Authors

Contributions

DG: Conceptualization, Methodology, Software, Data collection and analysis, Original draft preparation; MD: Visualization and investigation; SC: Data analysis and investigation; BD: Reviewing and editing of prepared manuscript; RB: Final correction and editing of the manuscript before submission; SD: Software, Validation; SC: Supervision of the entire work.

Corresponding author

Correspondence to Surya Chattopadhyaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D., Debbarma, M., Chanda, S. et al. Cationic and anionic composition-dependent mechanical and thermal properties of zinc-blende specimens under \({\hbox {Mg}}_{x} {\hbox {Zn}}_{1\hbox {-}x} {\hbox {S}}_{y} {\hbox {Se}}_{1\hbox {-}y}\) quaternary system: calculations with density functional FP-LAPW scheme. Eur. Phys. J. B 94, 20 (2021). https://doi.org/10.1140/epjb/s10051-020-00024-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00024-4

Navigation