Skip to main content

Advertisement

Log in

Exploring the possibility of enhancing the figure-of-merit (> 2) of Na0.74CoO2: A combined experimental and theoretical study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Search of new thermoelectric (TE) materials with high figure-of-merit (ZT) is always inspired the researcher in TE field. Here, we present a combined experimental and theoretical study of TE properties on Na0.74CoO2 compound in high temperature region. The experimental Seebeck coefficient (S) is found to vary from 64 to 118 μV/K in the temperature range 300−620 K. The observed value of thermal conductivity (κ) is ~2.2 W/m-K at 300 K. In the temperature region 300−430 K, the value of κ increases up to ~2.6 W/m-K and then decreases slowly till 620 K with the corresponding value of ~2.4 W/m-K. We have also carried out the theoretical calculations and the best matching between experimental and calculated values of transport properties are observed in spin-polarized calculation within DFT + U by chosen U = 4 eV. The maximum calculated value of ZT is found to be ~0.67 at 1200 K for p-type conduction. Our computational study suggests that the possibility of n-type behaviour of the compound which can lead to a large value of ZT at higher temperature region. Electron doping of ~5.1 × 1020 cm−3 is expected to give rise the high ZT value of ~2.7 at 1200 K. Using these temperature dependent ZT values, we have calculated the maximum possible values of efficiency (η) of thermoelectric generator (TEG) made by p and n-type Na0.74CoO2. The present study suggests that one can get the efficiency of a TE cell as high as ~11% when the cold and hot end temperature are fixed at 300 and 1200 K, respectively. Such high values of ZT and efficiency suggest that Na0.74CoO2 can be used as a potential candidate for high temperature TE applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, N. Hamada, J. Appl. Phys. 104, 013703 (2008)

    Article  ADS  Google Scholar 

  2. Y. Pei, H. Wang, G.J. Snyder, Adv. Mater. 24, 6125 (2012)

    Article  Google Scholar 

  3. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Nature 473, 66 (2011)

    Article  ADS  Google Scholar 

  4. A.D. LaLonde, Y. Pei, H. Wang, G.J. Snyder, Mater. Today 14, 526 (2011)

    Article  Google Scholar 

  5. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

    Article  ADS  Google Scholar 

  6. S. Sk, P. Devi, S. Singh, S.K. Pandey, Mater. Res. Express 6, 026302 (2018)

    Article  ADS  Google Scholar 

  7. N.W. Ashcroft, N.D. Mermin, inSolid State Physics, edited by D.G. Crane, (Saunders College Publishing, New York, 1976), Vol. 239

  8. Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, C. Uher, Appl. Phys. Lett. 79, 4165 (2001)

    Article  ADS  Google Scholar 

  9. S. Sakurada, N. Shutoh, Appl. Phys. Lett. 86, 2105 (2005)

    Article  Google Scholar 

  10. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489, 414 (2012)

    Article  ADS  Google Scholar 

  11. O. Yamashita, S. Tomiyoshi, K. Makita, J. Appl. Phys 93, 368 (2003)

    Article  ADS  Google Scholar 

  12. K. Biswas, J.Q. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489, 414 (2012)

    Article  ADS  Google Scholar 

  13. I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, R12685 (1997)

    Article  ADS  Google Scholar 

  14. Y. Wang, N.S. Rogado, R.J. Cava, N.P. Ong, Nature 423, 425 (2003)

    Article  ADS  Google Scholar 

  15. T. Kawata, Y. Iguchi, T. Itoh, K. Takahata, I. Terasaki, Phys. Rev. B 60, 10584 (1999)

    Article  ADS  Google Scholar 

  16. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian, T. Sasaki, Nature 422, 53 (2003)

    Article  ADS  Google Scholar 

  17. N. Kaurav, K.K. Wu, Y.K. Kuo, G.J. Shu, F.C. Chou, Phys. Rev. B 79, 075105 (2009)

    Article  ADS  Google Scholar 

  18. F. Rivadulla, J.S. Zhou, J.B. Goodenough, Phys. Rev. B 68, 075108 (2003)

    Article  ADS  Google Scholar 

  19. L. Wang, M. Wang, D. Zhao, J. Alloys. Compd. 471, 519 (2009)

    Article  Google Scholar 

  20. M.M. Mallick, S. Vitta, J. Electron. Mater. 47, 3230 (2018)

    Article  ADS  Google Scholar 

  21. M. Ito, D. Furumoto, J. Alloys Compd. 450, 494 (2008)

    Article  Google Scholar 

  22. K. Park, J.W. Choi, J. Nanosci. Nanotechnol. 12, 3624 (2012)

    Article  Google Scholar 

  23. J. Sugiyama, H. Itahara, J.H. Brewer, E.J. Ansaldo, T. Motohashi, M. Karppinen, H. Yamauchi, Phys. Rev. B 67, 214420 (2003)

    Article  ADS  Google Scholar 

  24. T. Motohashi, R. Ueda, E. Naujalis, T. Tojo, I. Terasaki, T. Atake, M. Karppinen, H. Yamauchi, Phys. Rev. B 67, 064406 (2003)

    Article  ADS  Google Scholar 

  25. S. Bayrakci, C. Bernhard, D.P. Chen, B. Keimer, R.K. Kremer, P. Lemmens, C.T. Lin, C. Niedermayer, J. Strempfer, Phys. Rev. B 69, 100410 (2004)

    Article  ADS  Google Scholar 

  26. R.J. Balsys, R.L. Davis, Solid State Ion. 93, 279 (1996)

    Article  Google Scholar 

  27. A.T. Boothroyd, R. Coldea, D.A. Tennant, D. Prabhakaran, L.M. Helme, C.D. Frost, Phys. Rev. Lett. 92, 19 (2004)

    Article  Google Scholar 

  28. D.J. Singh, Phys. Rev. B 61, 13397 (2000)

    Article  ADS  Google Scholar 

  29. D.J. Singh, Phys. Rev. B 68, 020503(R) (2003)

    Article  ADS  Google Scholar 

  30. M.L. Foo, Y. Wang, S. Watauchi, H.W. Zandbergen, T. He, R.J. Cava, N.P. Ong, Phys. Rev. Lett. 92, 24 (2004)

    Article  Google Scholar 

  31. H. Alloul, I.R. Mukhamedshin, T.A. Platova, A.V. Dooglav, EPL 85, 47006 (2009)

    Article  ADS  Google Scholar 

  32. H. Alloul, I.R. Mukhamedshin, A.V. Dooglav, Y.V. Dmitriev, V.C. Ciomaga, L. Pinsard-Gaudart, G. Collin, Phys. Rev. B 85, 134433 (2012)

    Article  ADS  Google Scholar 

  33. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  34. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  35. S.S. Shastri, S.K. Pandey, Comput. Mater. Sci. 143, 316 (2018)

    Article  Google Scholar 

  36. J. Pati, M. Chandra, R.S. Dhaka, arXiv:1910.08788

  37. H. Alloul, I.R. Mukhamedshin, A.V. Dooglav, Y.V. Dmitriev, V.-C. Ciomaga, L. Pinsard-Gaudart, G. Collin, Phys. Rev. B 85, 134433 (2012)

    Article  ADS  Google Scholar 

  38. A. Patel, S.K. Pandey, Instrum. Sci. Technol. 45, 366 (2017)

    Article  Google Scholar 

  39. A. Patel, S.K. Pandey, Rev. Sci. Instrum. 88, 015107 (2017)

    Article  ADS  Google Scholar 

  40. A. Patel, S.K. Pandey, Instrum. Sci. Technol. 46, 600 (2018)

    Article  Google Scholar 

  41. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz,“WIEN2k,” An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties (Elsevier, Amsterdam, 2001)

  42. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  43. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  44. E. Altin, E. Oz, S. Demirel, A. Bayri, Appl. Phys. A 119, 1187 (2015)

    Article  ADS  Google Scholar 

  45. L. Yang, Z.G. Chen, M. Hong, G. Han, J. Zou, Appl. Mater. Interfaces 7, 23694 (2015)

    Article  Google Scholar 

  46. H. Alloul, I.R. Mukhamedshin, G. Collin, N. Blanchard, EPL 82, 17002 (2008)

    Article  ADS  Google Scholar 

  47. Y.V. Lysogorskiy, S.A. Krivenko, I.R. Mukhamedshin, O.V. Nedopekin, D.A. Tayurskii, Phys. Rev. B 94, 205138 (2016)

    Article  ADS  Google Scholar 

  48. I. Kurniawan, B. Prijamboedi, J. Phys.: Conf. Ser. 1204, 012028 (2019)

    Google Scholar 

  49. L. Viciu, J.W.G. Bos, H.W. Zandbergen, Q. Huang, M.L. Foo, S. Ishiwata, A.P. Ramirez, M. Lee, N.P. Ong, R.J. Cava, Phys. Rev. B 73, 174104 (2006)

    Article  ADS  Google Scholar 

  50. S. Casolo, O.M. Lovvik, H. Fjeld, T. Norby, J. Phys.: Condens. Matter 24, 475505 (2012)

    ADS  Google Scholar 

  51. P. Wissgott, A. Toschi, H. Usui, K. Kuroki, K. Held, Phys. Rev. B 82, R201106 (2010)

    Article  ADS  Google Scholar 

  52. H.J. Xiang, D.J. Singh, Phys. Rev. B 76, 195111 (2007)

    Article  ADS  Google Scholar 

  53. A.S. Botana, P.M. Botta, C. de la Calle, V. Pardo, D. Baldomir, J.A. Alonso, Phys. Rev. B 83, 184420 (2011)

    Article  ADS  Google Scholar 

  54. S. Sharma, S.K. Pandey, Phys. Lett. A 379, 2357 (2015)

    Article  ADS  Google Scholar 

  55. S. Singh, D. Kumar, S.K. Pandey, J. Phys.: Condens. Matter 29, 105601 (2017)

    ADS  Google Scholar 

  56. J.W.F. Dorleijn, Philips Res. Rep. 31, 287 (1976)

    Google Scholar 

  57. S. Ahmad, S.D. Mahanti, Phys. Rev. B 81, 165203 (2010)

    Article  ADS  Google Scholar 

  58. K. Gaurav, S.K. Pandey, J. Renew. Sustain. Energy 9, 014701 (2017)

    Article  Google Scholar 

  59. B. Sherman, R.R. Heikes, R.W. Ure, J. Appl. Phys. 31, 1 (1960)

    Article  ADS  Google Scholar 

  60. S. Sano, H. Mizukami, H. Kaibe, Komatsu Tech. Rep. 49(152), 1 (2003)

    Google Scholar 

  61. G.J. Shu, A. Prodi, S.Y. Chu, Y.S. Lee, H.S. Sheu, F.C. Chou, Phys. Rev. B 76, 184115 (2007)

    Article  ADS  Google Scholar 

  62. T.A. Platova, I.R. Mukhamedshin, A.V. Dooglav, H. Alloul, JETP Letters 91, 421 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamim Sk.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sk, S., Pati, J., Dhaka, R.S. et al. Exploring the possibility of enhancing the figure-of-merit (> 2) of Na0.74CoO2: A combined experimental and theoretical study. Eur. Phys. J. B 93, 155 (2020). https://doi.org/10.1140/epjb/e2020-10227-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10227-x

Keywords

Navigation