Skip to main content

Abstract

Over the past 20 years, sodium cobaltate (NaxCoO2) has been considered a front-runner for medium and high-temperature thermoelectric applications. As common with all thermoelectric materials, tens of different dopants have so far been examined to improve the thermoelectric efficiency of sodium cobaltate. However, progress has remained incremental. In this chapter, we review the experimental and theoretical reports on doped sodium cobaltate to discern how a dopant’s incorporation site in the sodium cobaltate’s complex lattice can improve the thermoelectric performance. We conclude that density functional calculations can offer valuable complementary atomic-scale insight into dopants’ behaviour. As a result, density functional simulations can guide the experimental efforts to the best possible dopants. Our conclusions can be generalised to other types of thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Roger, D.J.P. Morris, D.A. Tennant, M.J. Gutmann, J.P. Goff, J.U. Hoffmann, et al., Patterning of sodium ions and the control of electrons in sodium cobaltate. Nature 445(7128), 631–634 (2007). https://doi.org/10.1038/nature05531

    Article  CAS  Google Scholar 

  2. P. Mendels, D. Bono, J. Bobroff, G. Collin, D. Colson, N. Blanchard, et al., Cascade of bulk magnetic phase transitions in NaxCoO2 as studied by muon spin rotation. Phys. Rev. Lett. 94(13), 136403 (2005). https://doi.org/10.1103/PhysRevLett.94.136403

    Article  CAS  Google Scholar 

  3. R. Berthelot, D. Carlier, C. Delmas, Electrochemical investigation of the P2–NaxCoO2 phase diagram. Nat. Mater. 10(1), 74–80 (2011). https://doi.org/10.1038/nmat2920

    Article  CAS  Google Scholar 

  4. E. Vera, B. Alcántar-Vázquez, Y. Duan, H. Pfeiffer, Bifunctional application of sodium cobaltate as a catalyst and captor through CO oxidation and subsequent CO2 chemisorption processes. RSC Adv. 6(3), 2162–2170 (2016). https://doi.org/10.1039/C5RA22749F

    Article  CAS  Google Scholar 

  5. J.W. Fergus, Oxide materials for high temperature thermoelectric energy conversion. J. Eur. Ceram. Soc. 32(3), 525–540 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.10.007

    Article  CAS  Google Scholar 

  6. I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56(20), R12685–R126R7 (1997). https://doi.org/10.1103/PhysRevB.56.R12685

    Article  CAS  Google Scholar 

  7. Y. Wang, N.S. Rogado, R. Cava, N. Ong, Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature 423(6938), 425–428 (2003). https://doi.org/10.1038/nature01639

    Article  CAS  Google Scholar 

  8. P.H. Tsai, T.S. Zhang, R. Donelson, T.T. Tan, S. Li, Power factor enhancement in Zn-doped Na0.8CoO2. J. Alloy Compd. 509(16), 5183–5186 (2011). https://doi.org/10.1016/j.jallcom.2011.02.045

    Article  CAS  Google Scholar 

  9. T. Seetawan, V. Amornkitbamrung, T. Burinprakhon, S. Maensiri, K. Kurosaki, H. Muta, et al., Thermoelectric power and electrical resistivity of Ag-doped Na1.5Co2O4. J. Alloys Compd. 407(1), 314–317 (2006). https://doi.org/10.1016/j.jallcom.2005.06.032

    Article  CAS  Google Scholar 

  10. A. Nag, V. Shubha, Oxide thermoelectric materials: a structure–property relationship. J. Electron. Mater. 43(4), 962–977 (2014). https://doi.org/10.1007/s11664-014-3024-6

    Article  CAS  Google Scholar 

  11. M.L. Foo, Y. Wang, S. Watauchi, H. Zandbergen, T. He, R. Cava, et al., Charge ordering, commensurability, and metallicity in the phase diagram of the layered NaxCoO2. Phys. Rev. Lett. 92(24), 247001 (2004). https://doi.org/10.1103/PhysRevLett.92.247001

    Article  CAS  Google Scholar 

  12. M. Weller, A. Sacchetti, H.R. Ott, K. Mattenberger, B. Batlogg, Melting of the Na layers in solid Na0.8CoO2. Phys. Rev. Lett. 102(5), 056401 (2009). https://doi.org/10.1103/PhysRevLett.102.056401

    Article  CAS  Google Scholar 

  13. G. Mahan, J. Sofo, The best thermoelectric. Proc. Natl. Acad. Sci. U. S. A. 93(15), 7436–7439 (1996). https://doi.org/10.1073/pnas.93.15.7436

    Article  CAS  Google Scholar 

  14. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008). https://doi.org/10.1038/nmat2090

    Article  CAS  Google Scholar 

  15. K. Koumoto, I. Terasaki, R. Funahashi, Complex oxide materials for potential thermoelectric applications. MRS Bull. 31(03), 206–210 (2006). https://doi.org/10.1557/mrs2006.46

    Article  CAS  Google Scholar 

  16. D.J. Voneshen, K. Refson, E. Borissenko, M. Krisch, A. Bosak, A. Piovano, et al., Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate. Nat. Mater. 12(11), 1028–1032 (2013). https://doi.org/10.1038/nmat3739

    Article  CAS  Google Scholar 

  17. T. Nagira, M. Ito, S. Katsuyama, K. Majima, H. Nagai, Thermoelectric properties of (Na1-yMy)xCo2O4 (M=K, Sr, Y, Nd, Sm and Yb; y=0.01 similar to 0.35). J. Alloy Compd. 348(1–2), 263–269 (2003). https://doi.org/10.1016/s0925-8388(02)00799-5

    Article  CAS  Google Scholar 

  18. U. Ozgur, X. Gu, S. Chevtchenko, J. Spradlin, S.J. Cho, H. Morkoc, et al., Thermal conductivity of bulk ZnO after different thermal treatments. J. Electron. Mater. 35(4), 550–555 (2006). https://doi.org/10.1007/s11664-006-0098-9

    Article  CAS  Google Scholar 

  19. Y.S. Meng, Y. Hinuma, G. Ceder, An investigation of the sodium patterning in NaxCoO2 (0.5< x< 1) by density functional theory methods. J. Chem. Phys. 128, 104708 (2008). https://doi.org/10.1063/1.2839292

    Article  CAS  Google Scholar 

  20. M.H.N. Assadi, S. Li, R.K. Zheng, S.P. Ringer, A.B. Yu, Magnetic, electrochemical and thermoelectric properties of P2-Nax(Co7/8Sb1/8)O2. Chem. Phys. Lett. 687, 233–237 (2017). https://doi.org/10.1016/j.cplett.2017.09.026

    Article  CAS  Google Scholar 

  21. Q. Huang, M.L. Foo, R.A. Pascal, J.W. Lynn, B.H. Toby, T. He, et al., Coupling between electronic and structural degrees of freedom in the triangular lattice conductor NaxCoO2. Phys. Rev. B 70(18), 184110 (2004). https://doi.org/10.1103/PhysRevB.70.184110

    Article  CAS  Google Scholar 

  22. P.H. Zhang, R.B. Capaz, M.L. Cohen, S.G. Louie, Theory of sodium ordering in NaxCoO2. Phys. Rev. B 71(15), 153102 (2005). https://doi.org/10.1103/PhysRevB.71.153102

    Article  CAS  Google Scholar 

  23. N.K. Samin, R. Roshidah, N. Kamarudin, N. Kamarulzaman, Synthesis and battery studies of sodium cobalt oxides, NaCoO2 cathodes. Adv. Mater. Res. 545, 185–189 (2012). https://doi.org/10.4028/www.scientific.net/AMR.545.185

    Article  CAS  Google Scholar 

  24. P.-H. Tsai, M.H.N. Assadi, T. Zhang, C. Ulrich, T.T. Tan, R. Donelson, et al., Immobilisation of Na ions for substantial power factor enhancement: site-specific defect engineering in Na0.8CoO2. J. Phys. Chem. C 116(6), 4324–4329 (2012). https://doi.org/10.1021/jp209343v

    Article  CAS  Google Scholar 

  25. W. Zhang, P. Liu, Y. Wang, K. Zhu, G. Tai, J. Liu, et al., Textured NaxCoO2 ceramics sintered from hydrothermal platelet nanocrystals: growth mechanism and transport properties. J. Electron. Mater. 47(7), 4070–4077 (2018). https://doi.org/10.1007/s11664-018-6296-4

    Article  CAS  Google Scholar 

  26. T. Nagira, M. Ito, S. Hara, Effect of partial substitutions of rare-earth metals for Na-site on the thermoelectric properties of NaxCo2O4 prepared by the polymerised complex method. Mater. Trans. 45(4), 1339–1345 (2004). https://doi.org/10.2320/matertrans.45.1339

    Article  CAS  Google Scholar 

  27. M. Ito, D. Furumoto, Effects of noble metal addition on microstructure and thermoelectric properties of NaxCo2O4. J. Alloy Compd. 450(1), 494–498 (2008). https://doi.org/10.1016/j.jallcom.2006.11.032

    Article  CAS  Google Scholar 

  28. E. Ermawan, S. Poertadji, Thermoelectric properties enhancement of NaCo2O4 through ca atom partial substitution on Na atom. Adv. Mater. Res. 1123, 140–144 (2015). https://doi.org/10.4028/www.scientific.net/AMR.1123.140

    Article  Google Scholar 

  29. P. Mandal, Anomalous transport properties of co-site impurity doped NaxCoO2. J. Appl. Phys. 104(6), 063902 (2008). https://doi.org/10.1063/1.2978212

    Article  CAS  Google Scholar 

  30. S. Li, R. Funahashi, I. Matsubara, S. Sodeoka, Magnetic and thermoelectric properties of NaCo2−xMxO4 (M = Mn, Ru). Mater. Res. Bull. 35(14), 2371–2378 (2000). https://doi.org/10.1016/S0025-5408(00)00441-4

    Article  CAS  Google Scholar 

  31. L. Wang, M. Wang, D. Zhao, Thermoelectric properties of c-axis oriented Ni-substituted NaCoO2 thermoelectric oxide by the citric acid complex method. J. Alloy Compd. 471(1), 519–523 (2009). https://doi.org/10.1016/j.jallcom.2008.04.013

    Article  CAS  Google Scholar 

  32. K. Park, K.U. Jang, H.C. Kwon, J.G. Kim, W.S. Cho, Influence of partial substitution of cu for co on the thermoelectric properties of NaCo2O4. J. Alloy Compd. 419(1), 213–219 (2006). https://doi.org/10.1016/j.jallcom.2005.08.081

    Article  CAS  Google Scholar 

  33. K. Park, J.H. Lee, Enhanced thermoelectric properties of NaCo2O4 by adding ZnO. Mater. Lett. 62(15), 2366–2368 (2008). https://doi.org/10.1016/j.matlet.2007.11.090

    Article  CAS  Google Scholar 

  34. A.I. Klyndyuk, N.S. Krasutskaya, E.A. Chizhova, L.E. Evseeva, S.A. Tanaeva, Synthesis and properties of Na0.55Co0.9M0.1O2 (M = Sc, Ti, Cr–Zn, Mo, W, Pb, bi) solid solutions. Glas. Phys. Chem. 42(1), 100–107 (2016). https://doi.org/10.1134/s1087659616010053

    Article  CAS  Google Scholar 

  35. M.O. Erdal, M. Koyuncu, M.L. Aksu, I. Uslu, S. Koçyiğit, Thermoelectric properties of nickel and boron co-substituted NaCo2O4 prepared by electrospinning technique. Nano. Hybrid. Compos. 19, 34–45 (2018). https://doi.org/10.4028/www.scientific.net/NHC.19.34

    Article  Google Scholar 

  36. D.K. Aswal, R. Basu, A. Singh, Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Convers. Manag. 114, 50–67 (2016). https://doi.org/10.1016/j.enconman.2016.01.065

    Article  Google Scholar 

  37. X. Zhang, L.-D. Zhao, Thermoelectric materials: energy conversion between heat and electricity. J. Mater. 1(2), 92–105 (2015). https://doi.org/10.1016/j.jmat.2015.01.001

    Article  Google Scholar 

  38. J.A. Alonso, M.J. Martínez-Lope, A. Aguadero, L. Daza, Neutron powder diffraction as a characterisation tool of solid oxide fuel cell materials. Prog. Solid State Chem. 36(1), 134–150 (2008). https://doi.org/10.1016/j.progsolidstchem.2007.03.004

    Article  CAS  Google Scholar 

  39. M.H.N. Assadi, H. Katayama-Yoshida, Interplay between magnetism and Na concentration in NaxCoO2. Funct. Mater. Lett. 08(03), 1540016 (2015). https://doi.org/10.1142/S1793604715400160

    Article  CAS  Google Scholar 

  40. M.H.N. Assadi, H. Katayama-Yoshida, Restoration of long range order of Na ions in NaxCoO2 at high temperatures by sodium site doping. Comput. Mater. Sci. 109, 308–311 (2015). https://doi.org/10.1016/j.commatsci.2015.07.043

    Article  CAS  Google Scholar 

  41. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, et al., First-principles calculations for point defects in solids. Rev. Mod. Phys. 86(1), 253–305 (2014). https://doi.org/10.1103/RevModPhys.86.253

    Article  Google Scholar 

  42. K. Reuter, M. Scheffler, Composition, structure, and stability of RuO2 (110) as a function of oxygen pressure. Phys. Rev. B 65(3), 035406 (2001). https://doi.org/10.1103/PhysRevB.65.035406

    Article  CAS  Google Scholar 

  43. M.H.N. Assadi, H. Katayama-Yoshida, Sodium cobaltate engineered with alkaline earth metal doping for waste energy harvesting; a theoretical study. Energy Procedia 75, 3259–3264 (2015). https://doi.org/10.1016/j.egypro.2015.07.697

    Article  CAS  Google Scholar 

  44. M.H.N. Assadi, S. Li, A.B. Yu, Selecting the suitable dopants: Electronic structures of transition metal and rare earth doped thermoelectric sodium cobaltate. RSC Adv. 3(5), 1442–1449 (2013). https://doi.org/10.1039/c2ra22514j

    Article  CAS  Google Scholar 

  45. M.H.N. Assadi, H. Katayama-Yoshida, Magnetism and Spin Entropy in Ru Doped Na0.5CoO2. Phys. Chem. Chem. Phys. 19, 23425–23430 (2017). https://doi.org/10.1039/C7CP03752J

    Article  CAS  Google Scholar 

  46. M.H.N. Assadi, H. Katayama-Yoshida, Dopant incorporation site in sodium cobaltate’s host lattice: a critical factor for thermoelectric performance. J. Phys. Condens. Matter 27(17), 175504 (2015). https://doi.org/10.1088/0953-8984/27/17/175504

    Article  CAS  Google Scholar 

  47. M.H.N. Assadi, M. Fronzi, P. Mele, Suppression of magnetism and Seebeck effect in Na0.875CoO2 induced by SbCo dopants. Mater. Renew Sust. Energy 9, 5 (2019). https://doi.org/10.1007/s40243-020-0165-9

    Article  Google Scholar 

  48. M.H.N. Assadi, Na site doping a pathway for enhanced thermoelectric performance in Na1−xCoO2, The case of Gd and Yb dopants. J. Phys. Condens. Matter. 32, 125502 (2020). https://doi.org/10.1088/1361-648X/ab5bdb

    Article  CAS  Google Scholar 

  49. M.H.N. Assadi, Hf doping at Co site for enhancing the thermoelectric performance in layered Na0.75CoO2. Mater Today Proc. (2020. in press). https://doi.org/10.1016/j.matpr.2020.01.349

  50. Y. Ono, N. Kato, Y. Miyazaki, T. Kajitani, Transport properties of Ca-doped γ-NaxCoO2. J. Ceram Soc. Jpn 112, S626–S6S8 (2004). https://doi.org/10.14852/jcersjsuppl.112.0.S626.0

    Article  Google Scholar 

  51. P. Strobel, H. Muguerra, S. Hébert, E. Pachoud, C. Colin, M.-H. Julien, Effect of ruthenium substitution in layered sodium cobaltate NaxCoO2: synthesis, structural and physical properties. J. Solid State Chem. 182(7), 1872–1878 (2009). https://doi.org/10.1016/j.jssc.2009.04.030

    Article  CAS  Google Scholar 

  52. I. Terasaki, High-temperature oxide thermoelectrics. J. Appl. Phys. 110(5), 053705 (2011). https://doi.org/10.1063/1.3626459

    Article  CAS  Google Scholar 

  53. W. Koshibae, K. Tsutsui, S. Maekawa, Thermopower in cobalt oxides. Phys. Rev. B 62(11), 6869–6872 (2000). https://doi.org/10.1103/PhysRevB.62.6869

    Article  CAS  Google Scholar 

  54. R.R. Heikes, R.W. Ure, Thermoelectricity: Science and Engineering (Interscience Publishers, New York, 1961)

    Google Scholar 

  55. P.M. Chaikin, G. Beni, Thermopower in the correlated hopping regime. Phys. Rev. B 13(2), 647–651 (1976). https://doi.org/10.1103/PhysRevB.13.647

    Article  CAS  Google Scholar 

  56. S. Mukerjee, Thermopower of the Hubbard model: Effects of multiple orbitals and magnetic fields in the atomic limit. Phys. Rev. B 72(19), 195109 (2005). https://doi.org/10.1103/PhysRevB.72.195109

    Article  CAS  Google Scholar 

  57. P. Brinks, G. Rijnders, M. Huijben, Size effects on thermoelectric behavior of ultrathin NaxCoO2 films. Appl. Phys. Lett. 105(19), 193902 (2014). https://doi.org/10.1063/1.4901447

    Article  CAS  Google Scholar 

  58. K. Fujita, T. Mochida, K. Nakamura, High-temperature thermoelectric properties of NaxCoO2-δ single crystals. Jp J. Appl. Phys. 40(1–7), 4644–4647 (2001). https://doi.org/10.1143/jjap.40.4644

    Article  CAS  Google Scholar 

  59. C. Thinaharan, D.K. Aswal, A. Singh, S. Bhattacharya, N. Joshi, S.K. Gupta, et al., Growth and morphology of the single crystals of thermoelectric oxide material NaxCoO2. Cryst. Res. Technol. 39(7), 572–576 (2004). https://doi.org/10.1002/crat.200310226

    Article  CAS  Google Scholar 

  60. L. Yu, L. Gu, Y. Wang, P.X. Zhang, H.U. Habermeier, Epitaxial layered cobaltite NaxCoO2 thin films grown on planar and vicinal cut substrates. J. Cryst. Growth 328(1), 34–38 (2011). https://doi.org/10.1016/j.jcrysgro.2011.06.033

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hussein N. Assadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Assadi, M.H.N. (2021). Theoretical and Experimental Surveys of Doped Thermoelectric NaxCoO2. In: Roca, A.G., et al. Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites. Springer, Cham. https://doi.org/10.1007/978-3-030-74073-3_13

Download citation

Publish with us

Policies and ethics