Skip to main content
Log in

Growth and application of WSe2 single crystal synthesized by DVT in thin film hetero-junction photodetector

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Tungsten di-selenide (WSe2) belonging to the family of layered transition metal di-chalcogenides (TMDCs) is at present widely used in optoelectronic devices due to their adequate energy band gap suitable for photosensing applications. In the present investigation, WSe2 single crystals are grown by direct vapor transport (DVT) technique in a dual zone horizontal furnace maintaining a temperature difference of 50 K between source zone (SZ) and growth zone (GZ). The crystals thus obtained were thin, shiny and with an average thickness of 30 mm. The surface topography of crystals studied by optical microscope revealed hexagonal spirals on the crystal surface which seemed to arise due to screw dislocation defect. The structural properties of the as grown crystals studied by powder X-ray diffraction (XRD) elucidated good crystallinity, hexagonal structure and confirmed the orientation of crystals along crystallographic c-axis. P-type semiconductor nature of the crystals was affirmed by thermoelectric power (TEP) measurement. Optical and vibrational properties of the grown crystals were studied by UV–Visible, photoluminescence (PL) and Raman spectroscopy. An optical direct band gap of 1.41 eV was determined for the crystals which were micromechanically exfoliated upto few layers. The excitonic mechanism of the grown WSe2 crystal was explained by PL spectroscopy. The results of Raman spectroscopy disclosed A1g and E2g vibrational modes present in the crystals. The current–voltage characteristics of nSnSe/pWSe2 hetero-structure studied using Keithley 2400 SMU showed rectification behavior at low bias voltage in dark and illuminated conditions. The diode parameters like ideality factor and barrier potential were determined to be 2.54 and 0.4 eV, respectively, by following conventional lnIV method. The photodetection properties of the fabricated device were studied using a Laser source (670 nm) having an intensity of 3 mWcm−2at different bias voltage ranging from 0.3 V to 3 V. Parameters such as responsivity, detectivity and external quantum efficiency (EQE) were calculated to substantiate the excellent detection properties shown by the prepared photodetector using time resolved pulsed photoresponse. Value of responsivity and EQE increased from 42.22 mA W−1 to 533.77 mA W−1 and 7% to 95%, respectively, with increase in bias voltage from 0.3 V to 3 V. Also, detectivity values were found to be of the order of 107 Jones.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Britnell, R.M. Riberio, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, C. Casiraghi, A.H. Casto Neto, K.S. Novoselov, Science 340, 1311 (2013)

    Article  ADS  Google Scholar 

  2. S.T. Song, L. Cui, J. Yang, X.W. Du, ACS Appl. Mater. Interfaces 7, 1949 (2015)

    Article  Google Scholar 

  3. J. Yao, Z. Zheng, G. Yang, ACS Appl. Mater. Interfaces 8, 12915 (2016)

    Article  Google Scholar 

  4. R.C. Ryder, J.D. Wood, S.A. Well, M.C. Hersam, ACS Nano 10, 3900 (2016)

    Article  Google Scholar 

  5. J. Kim, S. Byun, A.J. Smith, J. Yu, J. Huang, J. Phys. Chem. Lett. 4, 1227 (2013)

    Article  Google Scholar 

  6. W. Tang, S.S. Rassay, N.M. Ravindra, Madridge J. Nanotechnol. Nanosci. 2, 58 (2017)

    Article  Google Scholar 

  7. Y. Mingxiao, D. Zhang, Y.K. Yap, Electronics 6, 1 (2017)

    Article  Google Scholar 

  8. J.Y. Lee, J.H. Shin, G.H. Lee, C.H. Lee, Nanomaterials 6, 193 (2016)

    Article  Google Scholar 

  9. H. Schimidt et al., Nano Lett. 14, 1909 (2014)

    Article  ADS  Google Scholar 

  10. J. Deep et al., ACS Nano 8, 1102 (2014)

    Article  Google Scholar 

  11. X. Song, J. Hu, H. Zeng, J. Mater. Chem. C 1, 2952 (2013)

    Article  Google Scholar 

  12. Q.H. Wang, Z.K. Kalantar, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)

    Article  ADS  Google Scholar 

  13. V. Dixit, C. Vyas, V.M. Pathak, G.K. Solanki, K.D. Patel, AIP Conf. Proc. 1953, 070020 (2018)

    Article  Google Scholar 

  14. R.J. Castro, C.R. Cabrera, Langumir 11, 1375 (1995)

    Article  Google Scholar 

  15. A.B. Kaul, J. Mater. Res. 29, 348 (2014)

    Article  ADS  Google Scholar 

  16. A.A. Tedstone, D.J. Lewis, P. O’Brien, Chem. Mater. 28, 1965 (2016)

    Article  Google Scholar 

  17. M.A. Bisset, S.D. Worrall, I.A. Kinloch, A. Robert, W. Dryfe, Electrochem. Acta 201, 30 (2016)

    Article  Google Scholar 

  18. Y. Arora et al., Sci. Rep. 6, 36294 (2016)

    Article  ADS  Google Scholar 

  19. T. Wu, H. Zhang, Angew. Chem. Int. Ed. 54, 4432 (2015)

    Article  Google Scholar 

  20. L. Jiang, B. Lin, X. Li, X. Song, H. Xia, L. Li, H. Zeng, ACS Appl. Mater. Interfaces 8, 2680 (2016)

    Article  Google Scholar 

  21. C.P. Lu, G. Li, J. Mao, L.M. Wang, E.Y. Andrei, Nano Lett. 14, 4628 (2014)

    Article  ADS  Google Scholar 

  22. H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S.Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, X. Wang, Nat. Commun. 4, 2642 (2013)

    Article  ADS  Google Scholar 

  23. K.T. Lam, X. Cao, J. Guo, IEEE Electron Device Lett. 34, 1331 (2013)

    Article  ADS  Google Scholar 

  24. F.K. Perkins et al., Nano Lett. 13, 668 (2013)

    Article  ADS  Google Scholar 

  25. M. Chhowalla et al., Nat. Chem. 5, 263 (2013)

    Article  Google Scholar 

  26. M. Pumera, A.H. Loo, TrAC Trends Anal. Chem. 61, 49 (2014)

    Article  Google Scholar 

  27. A. Kumar, P.K. Ahluwalia, Eur. Phys. J. B 85, 186 (2012)

    Article  ADS  Google Scholar 

  28. A. Kumar, P.K. Ahluwalia, J. Alloys Compd. 550, 283 (2013)

    Article  Google Scholar 

  29. S. Kapatel, C.K. Sumesh, P. Pataniya, G.K. Solanki, K.D. Patel, Eur. Phys. J. Plus 132, 191 (2017)

    Article  Google Scholar 

  30. V. Dixit, C. Vyas, A. Patel, V.M. Pathak, G.K. Solanki, K.D. Patel, AIP Conf. Proc. 1961, 030017 (2018)

    Article  Google Scholar 

  31. X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang, Nat. Nanotechnol. 9, 682 (2014)

    Article  ADS  Google Scholar 

  32. J. Lin et al., Nat. Nanotechnol. 9, 436 (2014)

    Article  ADS  Google Scholar 

  33. B.H. Nguyen, V.H. Nguyen, Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 043001 (2016)

    Article  ADS  Google Scholar 

  34. V. Dixit et al., AIP Conf. Proc. 1728, 020633 (2016)

    Article  Google Scholar 

  35. G.K. Solanki, I.L. Chauhan, K.D. Patel, Can. J. Phys. 94, 212 (2016)

    Article  ADS  Google Scholar 

  36. P.R Patel, H.S. Patel, J.R. Rathod, K.D. Patel, V.M. Pathak, Am. J. Condens. Matter Phys. 3, 13 (2013)

    Google Scholar 

  37. G.K. Solanki et al., J. Cryst. Growth 441, 101 (2016)

    Article  ADS  Google Scholar 

  38. P.F. Desai, D.D. Patel, A.R. Jani, J. Cryst. Growth 390, 12 (2014)

    Article  ADS  Google Scholar 

  39. P. Pataniya, G.K. Solanki, K.D. Patel, V.M. Pathak, C.K. Sumesh, Mater. Res. Express 4, 106306 (2017)

    Article  ADS  Google Scholar 

  40. G. Salitra, G. Hodes, E. Klein, R. Tenne, Thin Solid Films 245, 180 (1994)

    Article  ADS  Google Scholar 

  41. J.P. Tailor, D.S. Trivedi, S.H. Chaki, M.D. Chaudhary, M.P. Deshpande, Mater. Sci. Semicond. Process. 61, 11 (2017)

    Article  Google Scholar 

  42. G.K. Solanki, D.N. Gujarathi, M.P. Deshpand, D. Lakshinarayan, M.K. Agarwal, Cryst. Res. Technol. 43, 179 (2008)

    Article  Google Scholar 

  43. G. Perrluzo, A.A. Lakhani, S. Jandl, Solid State Commun. 35, 301 (1980)

    Article  ADS  Google Scholar 

  44. D. Makhija, M. Patel, M.S. Jani, P.R. Jhakmola, Prajna J. Pure Appl. Sci. 16, 172 (2008)

    Google Scholar 

  45. D.K. Patel, IJSRSET 2, 880 (2016)

    Google Scholar 

  46. J.I. Pankove, Optical Processes in Semiconductors, 2nd Revised edn. (Dover Publication, New York, 2010)

  47. P.F. Desai, D.D. Patel, D.N. Bhavsar, A.R. Jani, AIP Conf. Proc. 1536, 319 (2013)

    Article  ADS  Google Scholar 

  48. D.L. Makhija, K.D. Patel, V.M. Pathak, R. Srivastava, J. Ovonic Res. 4, 141 (2008)

    Google Scholar 

  49. S. Acharaya, K.V. Bangera, G.K. Shivkumar, Appl. Nanosci. 5, 1003 (2015)

    Article  ADS  Google Scholar 

  50. G.K. Rao et al., Solid State Electron. 54, 787 (2010)

    Article  ADS  Google Scholar 

  51. A. Arora, M. Koperski, K. Nogajewski, J. Marcus, C. Faugeras, M. Potemski, RSC Nanoscale 7, 10421 (2015)

    Article  ADS  Google Scholar 

  52. G. He et al., Nano Lett. 15, 5052 (2015)

    Article  ADS  Google Scholar 

  53. H. Terrones et al., Sci. Rep. 4, 4215 (2014)

    Article  Google Scholar 

  54. Y. Liu, K. Tom, X. Zhang, S. Lou, Y. Liuand, J. Yao, New J. Phys. 19, 073018 (2017)

    Article  ADS  Google Scholar 

  55. M. Habib et al., Nanotechnology 29, 115701 (2018)

    Article  ADS  Google Scholar 

  56. S. Bhatt, M.P. Deshpande, V. Sathe, R. Rao, S.H. Chaki, J. Raman Spectrosc. 45, 971 (2014)

    Article  ADS  Google Scholar 

  57. C.R. Crowell, S.M. Sze, Solid State Electron. 9, 1035 (1966)

    Article  ADS  Google Scholar 

  58. C. Lamberti, Characterization of Semiconductor Heterostructures and Nanostructures (Elsevier Publication, Amsterdam, 2008)

  59. M. Patel, K.D. Patel, K.K. Patel, V.M. Pathak, R. Srivastava, Prajna J. Pure Appl. Sci. 18, 119 (2010)

    Google Scholar 

  60. A. Klien et al., Sol. Energy Mater. Sol. Cells 51, 181 (1998)

    Article  Google Scholar 

  61. K.M. Al-Shibani, Physica B 322, 390 (2002)

    Article  ADS  Google Scholar 

  62. C.U. Vyas et al., Mater. Sci. Semicond. Proc. 71, 226 (2017)

    Article  Google Scholar 

  63. A.S. Pawbaker et al., Mater. Res. Express 3, 105038 (2016)

    Article  ADS  Google Scholar 

  64. N.R. Pradhan, J. Ludwig, Z. Lu, D. Rhodes, M.M. Bishop, K. Thirunavukkuarasu, S.A. McGill, D. Smirnov, L. Balicas, ACS Appl. Mater. Interface 7, 12080 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Dixit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, V., Nair, S., Joy, J. et al. Growth and application of WSe2 single crystal synthesized by DVT in thin film hetero-junction photodetector. Eur. Phys. J. B 92, 118 (2019). https://doi.org/10.1140/epjb/e2019-90736-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90736-3

Keywords

Navigation