Skip to main content
Log in

A DFT study of H2 adsorption on Pdn/SnO2 (110) surfaces (n = 1−10)

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Hydrogen adsorption on palladium atoms pre-adsorbed on a tin oxide semiconductor has been studied and compared with H2 adsorption on a bare SnO2. By means of density functional theory calculations, the preferential number of Pd atoms and their geometry as well as the physisorption and chemisorption of H2 is analyzed on these surfaces. Namely, bare stoichiometric SnO2 (110) and Pd-doped SnO2 (110) surface systems are considered. It is found that Pd atoms tend to form clusters composed of 5 atoms. When considering sites with a favorable adsorption energy ( >0.10 eV), these pre-adsorbed Pd5 clusters increase the number of active sites for H2 chemisorption from 5 – in the case of the bare surface – to 16 for the same surface area. Bare SnO2 (110) surfaces also present 5 potential sites for physisorption while Pd5/SnO2 surface presents 10 potential physisorption sites when applying the same adsorption energy criterion. Although dissociative H2 adsorption is energetically more favorable for bare SnO2 than for Pd5/SnO2, the molecular H2 adsorption is slightly more favorable for the doped system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.-J. Li, X.-H. Zhang, S. Kawi, Sens. Actuators B 60, 64 (1999)

    Article  Google Scholar 

  2. S. Das, V. Jayaraman, Prog. Mater. Sci. 66, 112 (2014)

    Article  Google Scholar 

  3. C.S. Maheswari, C. Shanmugapriya, K. Revathy, A. Lalitha, J. Nanostruct. Chem. 7, 283 (2017)

    Article  Google Scholar 

  4. W. Göpel, K.D. Schierbaum, Sens. Actuators B 26, 1 (1995)

    Article  Google Scholar 

  5. B. Ruhland, T. Becker, G. Muller, Sens. Actuators B 50, 85 (1998)

    Article  Google Scholar 

  6. H. Ohnishi, H. Sasaki, T. Matsumoto, M. Ippommatsu, Sens. Actuators B 14, 677 (1993)

    Article  Google Scholar 

  7. A. Cabot, A. Vilà, J.R. Morante, Sens. Actuators B 84, 12 (2002)

    Article  Google Scholar 

  8. A. Chiorino, G. Ghiotti, M.C. Carotta, G. Martinelli, Sens. Actuators B 47, 205 (1998)

    Article  Google Scholar 

  9. W. Li, C. Shen, G. Wu, Y. Ma, Z. Gao, X. Xia, G. Du, J. Phys. Chem. C 115, 21258 (2011)

    Article  Google Scholar 

  10. J. Kappler, N. Barsan, U. Weimar, A. Dièguez, Anal. Chem. 361, 110 (1998)

    Article  Google Scholar 

  11. L. Wang, Y. Wang, K. Yu, S. Wang, Y. Zhang, C. Wei, Sens. Actuators B 232, 91 (2016)

    Article  Google Scholar 

  12. W. Zeng, T. Liu, D. Liu, E. Han, Sens. Actuators B 160, 455 (2011)

    Article  Google Scholar 

  13. Z. Wang, Z. Li, T. Jiang, X. Xu, C. Wang, ACS Appl. Mater. Interfaces 5, 2013 (2013)

    Article  Google Scholar 

  14. K. Wang, T. Zhao, G. Lian, Q. Yu, C. Luan, Q. Wang, D. Cui, Sens. Actuators B 184, 33 (2013)

    Article  Google Scholar 

  15. M. Shojaee, S. Nasresfahani, M.H. Sheikhi, Sens. Actuators B 254, 457 (2018)

    Article  Google Scholar 

  16. J.-H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Sens. Actuators B 285, 358 (2019)

    Article  Google Scholar 

  17. S. Zhu, Y. Liu, G. Wu, L. Fei, S. Zhang, Y. Hu, Z. Yan, Y. Wang, H. Gu, W. Chen, Sens. Actuators B 285, 49 (2019)

    Article  Google Scholar 

  18. M. Momirlan, T.N. Veziroglu, Int. J. Hydrogen Energy 30, 795 (2005)

    Article  Google Scholar 

  19. S. Okazaki, H. Nakagawa, S. Asakura, Y. Tomiuchi, N. Tsuji, H. Murayama, M. Washiya, Sens. Actuators B 93, 142 (2003)

    Article  Google Scholar 

  20. W. Zeng, T. Liu, D. Liu, E. Han, Sens. Actuators B 160, 455 (2011)

    Article  Google Scholar 

  21. D. Shaposhnik, R. Pavelko, E. Llobet, F. Gispert-Guirado, X. Vilanova, Proc. Eng. 25, 1133 (2011)

    Article  Google Scholar 

  22. C. Ling, Q. Xue, Z. Han, H. Lu, F. Xia, Z. Yan, L. Deng, Sens. Actuators B 227, 438 (2016)

    Article  Google Scholar 

  23. Z. Wang, Z. Li, T. Jiang, X. Xu, C. Wang, ACS Appl. Mater. Interfaces 5, 2013 (2013)

    Article  Google Scholar 

  24. N. Xue, Q. Zhang, S. Zhang, P. Zong, F. Yang, Sensors 17, 2351 (2017)

    Article  Google Scholar 

  25. I.H. Kadhim, H.A. Hassan, Q.N. Abdullah, Nano-Micro Lett. 8, 20 (2015)

    Article  Google Scholar 

  26. S. Rane, S. Arbuj, S. Rane, S. Gosavi, J. Mater. Sci. Mater. Electron 26, 3707 (2015)

    Article  Google Scholar 

  27. J.D. Prades, A. Cirera, J.R. Morante, J.M. Pruneda, P. Ordejon, Sens. Actuators B 126, 62 (2007)

    Article  Google Scholar 

  28. Y.B. Xue, Z.A. Tang, Sens. Actuators B 138, 108 (2009)

    Article  Google Scholar 

  29. Y. Chen, X. Wang, C. Shi, L. Li, H. Qin, J. Hu, Sens. Actuators B 220, 279 (2015)

    Article  Google Scholar 

  30. P. Bechthold, M.E. Pronsato, C. Pistonesi, Appl. Surf. Sci. 347, 291 (2015)

    Article  ADS  Google Scholar 

  31. T.S. Zyubina, A.S. Zyubina, Yu.A. Dobrovol’skii, V.M. Volokhov, A.V. Arsatov, Z.G. Bazhanova, Russ. J. Inorg. Chem. 56, 1579 (2011)

    Article  Google Scholar 

  32. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo et al., J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  33. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  34. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  36. A. Robina, E. German, M.E. Pronsato, A. Juan, I. Matolínová, V. Matolín, Vacuum 106, 86 (2014)

    Article  ADS  Google Scholar 

  37. E. German, V. Verdinelli, C. Pistonesi, M.E. Pronsato, VII Reunión Nacional de Sólidos, P36, Bahía Blanca, Argentina, Departamento de Física, IFISUR-UNS, 2017

  38. J. Oviedo, M.J. Gillan, Surf. Sci. 463, 93 (2000)

    Article  ADS  Google Scholar 

  39. J.D. Prades, A. Cirera, J.R. Morante, J.M. Runeda, P. Ordejón, Sens. Actuators B 126, 62 (2007)

    Article  Google Scholar 

  40. S. Grimme, J. Comput. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  41. N. Gabaldon-Limas, T.A. Manz, RSC Adv. 6, 45727 (2016)

    Article  Google Scholar 

  42. T.A. Manz, N. Gabaldon-Limas, RSC Adv. 6, 47771 (2016)

    Article  Google Scholar 

  43. T.A. Manz, N. Gabaldon Limas, Chargemol program for performing DDEC analysis, Version 3.4.4, 2016, http://ddec.sourceforge.net

  44. W. Tang, E. Sanville, G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009)

    ADS  Google Scholar 

  45. E. Sanville, S.D. Kenny, R. Smith, G. Henkelman, J. Comp. Chem. 28, 899 (2007)

    Article  Google Scholar 

  46. G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 36, 354 (2006)

    Article  Google Scholar 

  47. M. Yu, D.R. Trinkle, J. Chem. Phys. 134, 064111 (2011)

    Article  ADS  Google Scholar 

  48. J. Oviedo, M.J. Gillan, Surf. Sci. 513, 26 (2002)

    Article  ADS  Google Scholar 

  49. J. Oviedo, M.J. Gillan, Surf. Sci. 490, 221 (2001)

    Article  ADS  Google Scholar 

  50. G. Zanti, D. Peeters, Eur. J. Inorg. Chem. 26, 3904 (2009)

    Article  Google Scholar 

  51. P. Janthon, S. Luo, S.M. Kozlov, F. Vines, J. Limtrakul, D.G. Truhlar, F. Illas, J. Chem. Theory Comput. 10, 3832 (2014)

    Article  Google Scholar 

  52. S. Meng, E.G. Wang, S. Gao, Phys. Rev. B 69, 195404 (2004)

    Article  ADS  Google Scholar 

  53. J.A. Berger, L. Reining, F. Sottile, Phys. Rev. B 82, 041103(R) (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estefania German.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

German, E., Pistonesi, C. & Verdinelli, V. A DFT study of H2 adsorption on Pdn/SnO2 (110) surfaces (n = 1−10). Eur. Phys. J. B 92, 98 (2019). https://doi.org/10.1140/epjb/e2019-90659-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90659-y

Keywords

Navigation