Skip to main content

Advertisement

Log in

First-principles investigations on the visible light photocatalytic activity of NaNbO3 by N and F doping

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

To enhance the photocatalytic activity of NaNbO3 (NNO) for hydrogen production through water splitting, monodoping with N or F atoms and codoping with (N, F) atom pairs are applied to modulate the electronic structures of NNO, which are calculated with hybrid functional HSE06 in VASP code. F doping into NNO crystals yields little band gap reduction of the system. Although N doping can significantly reduce band gap and enhance the visible light response of the system, presence of the localized unoccupied states above Fermi level in forbidden zone may promote the electron–hole recombination and possibly result in a poor photoconversion efficiency. A favorable improvement is achieved with N and F codoping, which yields not only an uncontaminated forbidden band but also the significantly narrowed band gap suitable for visible light absorption. Moreover, the band edge positions of various codoped systems are also suitable for the overall water splitting. The calculated formation energy indicates that N doping becomes more feasible in the presence of F due to charge balance. So, the (N, F) pairs codoping can be justified for improving the visible light driven photoactivity of NNO. The effects of concentration and separation of dopants on the photocatalytic performances are also investigated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zhang, G. Liu, L. Wang, J.T.S. Irvine, Chem. Soc. Rev. 45, 5951 (2016)

    Article  Google Scholar 

  2. T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43, 7520 (2014)

    Article  Google Scholar 

  3. H. Shi, Z. Zou, J. Phys. Chem. Solids 73, 788 (2012)

    Article  ADS  Google Scholar 

  4. G. Li, T. Kako, D. Wang, Z. Zou, J. Ye, J. Phys. Chem. Solids 69, 2487 (2008)

    Article  ADS  Google Scholar 

  5. K. Katsumata, C.E.J. Cordonier, T. Shichi, A. Fujishima, J. Am. Chem. Soc. 131, 3856 (2009)

    Article  Google Scholar 

  6. J.W. Liu, G. Chen, Z.H. Li, Z.G. Zhang, Int. J. Hydrogen Energy 32, 2269 (2007)

    Article  Google Scholar 

  7. S.Y. Wu, X.Q. Liu, X.M. Chen, Ceram. Int. 36, 871 (2010)

    Article  Google Scholar 

  8. P. Li, S. Ouyang, G. Xi, T. Kako, J. Ye, J. Phys. Chem. C 116, 7621 (2012)

    Article  Google Scholar 

  9. P. Kanhere, Z. Chen, Molecules 19, 19995 (2014)

    Article  Google Scholar 

  10. K. Maeda, K. Domen, J. Phys. Chem. C 111, 7851 (2007)

    Article  Google Scholar 

  11. G. Liu, S. Ji, L. Yin, G. Xu, G. Fei, C. Ye, J. Appl. Phys. 109, 063103 (2011)

    Article  ADS  Google Scholar 

  12. J. Xu, F. Zhang, B. Sun, Y. Du, G. Li, W. Zhang, Int. J. Photoenergy 2015, 1 (2015)

    Google Scholar 

  13. B. Modak, P. Modak, S.K. Ghosh, RSC Adv. 6, 90188 (2016)

    Article  Google Scholar 

  14. G.Z. Wang, H. Chen, G. Wu, A.L. Kuang, H.K. Yuan, ChemPhysChem 17, 489 (2016)

    Article  Google Scholar 

  15. L. Li, W. Wang, H. Liu, X. Liu, Q. Song, S. Ren, J. Phys. Chem. C 113, 8460 (2009)

    Article  Google Scholar 

  16. G.Z. Wang, H. Chen, Y. Li, A.L. Kuang, H.K. Yuan, G. Wu, Phys. Chem. Chem. Phys. 17, 28743 (2015)

    Article  Google Scholar 

  17. X. Liu, K. Sohlberg, Comput. Mater. Sci. 123, 1 (2016)

    Article  Google Scholar 

  18. B. Modak, S.K. Ghosh, Sol. Energy Mater. Sol. Cells 159, 590 (2017)

    Article  Google Scholar 

  19. D. Sharma, S. Upadhyay, V.R. Satsangi, R. Shrivastav, U.V. Waghmare, S. Dass, J. Phys. Chem. C 118, 25320 (2014)

    Article  Google Scholar 

  20. A. Nashim, S. Martha, K.M. Parida, ChemCatChem 5, 2352 (2013)

    Article  Google Scholar 

  21. Y. Liu, X. Yu, W.D. Zhang, J. Phys. Chem. C 117, 12949 (2013)

    Article  Google Scholar 

  22. J. Su, L. Guo, N. Bao, G. Craig, Nano Lett. 11, 1928 (2011)

    Article  ADS  Google Scholar 

  23. S. Choudhary, A. Solanki, S. Upadhyay, N. Singh, V.R. Satsangi, R. Shrivastav, S. Dass, J. Solid State Electrochem. 17, 2531 (2013)

    Article  Google Scholar 

  24. J. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105, 9982 (1996)

    Article  ADS  Google Scholar 

  25. M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999)

    Article  ADS  Google Scholar 

  26. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  27. G. Kresse, J. Hafner, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  28. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  29. P.E. Blochl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  30. H. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  31. J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, J.G. Angyan, J. Chem. Phys. 124, 154709 (2006)

    Article  ADS  Google Scholar 

  32. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)

    Article  ADS  Google Scholar 

  33. K. Momma, F. Izumi, J. Appl. Cryst. 44, 1272 (2011)

    Article  Google Scholar 

  34. C.N.W. Darlington, K.S. Knight, Acta Cryst. B 55, 24 (1999)

    Article  Google Scholar 

  35. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  36. W. Zhu, X. Qiu, X.Q. Chen, H. Pan, W. Wang, N.M. Dimitrijevic, T. Rajh, H.M. Meyer, III, M.P. Paranthaman, G.M. Stocks, H.H. Weitering, B. Gu, G. Eres, Z. Zhang, Phys. Rev. Lett. 103, 226401 (2009)

    Article  ADS  Google Scholar 

  37. A. Tkach, A. Almeida, J.A. Moreira, J.P. de la Cruz, Y.R. Barcelay, P.M. Vilarinho, Appl. Phys. Lett. 100, 192909 (2012)

    Article  ADS  Google Scholar 

  38. C.G. Van de Walle, J. Neugebauer, J. Appl. Phys. 95, 3851 (2004)

    Article  ADS  Google Scholar 

  39. B. Mondak, S.K. Ghosh, J. Phys. Chem. C 120, 6920 (2016)

    Article  Google Scholar 

  40. B. Mondak, S.K. Ghosh, RSC Adv. 6, 9958 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Qiang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YQ., Wu, SY., Wu, LN. et al. First-principles investigations on the visible light photocatalytic activity of NaNbO3 by N and F doping. Eur. Phys. J. B 92, 68 (2019). https://doi.org/10.1140/epjb/e2019-90467-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90467-5

Keywords

Navigation