Skip to main content
Log in

First-Principles Study on Performance of g-C3N4 Self Codoped with C–N Pair as Photocatalyst in Water Splitting Process

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This paper theoretically studies the photocatalytic performance of g-C3N4 self codoped with C–N pair using first-principles. Calculations show that the system with a N2–C1 pair been replaced is the most stable structure. The difference in PDOS after codoping results from the neutral 2p orbital energy difference between the substitution and original atoms, as well as the change in interaction among all atoms after codoping. The band gap can be reduced by 0.41 eV through self C–N codoping. The visible light absorption ability is obviously enhanced through codoping. Both the CBM and VBM of g-C3N4 after codoping are still enough to meet the redox potentials for splitting water. In general, the g-C3N4 self codoped with C and N should have good performance as photocatalyst in water splitting process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walter MG, Warren EL, Mckone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473

    Article  CAS  PubMed  Google Scholar 

  2. Wang Z, Li C, Domen K (2019) Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev 48:2109–2125

    Article  CAS  PubMed  Google Scholar 

  3. Zhao D, Wang Y, Dong C, Huang Y, Chen J, Xue F, Shen S, Guo L (2021) Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat Energy 6:388–397

    Article  CAS  Google Scholar 

  4. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  PubMed  Google Scholar 

  5. Dai Z, Zhen Y, Sun Y, Li L, Ding D (2021) ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal. Chem Eng J 415:129002

    Article  CAS  Google Scholar 

  6. Yang B, Li X, Zhang Q, Yang X, Wan J, Liao G, Zhao J, Wang R, Liu J, Rodriguez RD, Jia X (2022) Ultrathin porous carbon nitride nanosheets with well-tuned band structures via carbon vacancies and oxygen doping for significantly boosting H2 production. Appl Catal B Environ 314:121521

    Article  CAS  Google Scholar 

  7. Xu X, Zhang J, Tao F, Dong Y, Wang L, Hong T (2022) Facile construction of Z-scheme g-C3N4/BiVO4 heterojunctions for boosting visible-light photocatalytic activity. Mater Sci Eng B 279:115676

    Article  CAS  Google Scholar 

  8. Wang Y, Zeng Y, Li B, Li A, Yang P, Yang L, Wang G, Chen J, Wang R (2016) In-situ hydrothermal synthesized γ -Al2O3/O-g-C3N4 heterojunctions with enhanced visible-light photocatalytic activity in water splitting for hydrogen. J Energy Chem 25:594–600

    Article  Google Scholar 

  9. Fu J, Zhu B, Jiang C, Cheng B, You W, Yu J (2017) Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 13:1603938

    Article  Google Scholar 

  10. Sun S, Li J, Cui J, Gou X, Yang Q, Liang S, Yang Z, Zhang J (2018) Constructing oxygen-doped g-C3N4 nanosheets with an enlarged conductive band edge for enhanced visible-light-driven hydrogen evolution. Inorg Chem Front 5:1721–1727

    Article  CAS  Google Scholar 

  11. Tian W, Li N, Zhou J (2016) A novel P-doped g-C3N4/Zn0.8Cd0.2S composite photocatalyst for degradation of methylene blue under simulated sunlight. Appl Surf Sci 361:251–258

    Article  CAS  Google Scholar 

  12. Feng J, Zhang D, Zhou H, Pi M, Wang X, Chen S (2018) Coupling P nanostructures with P-doped g-C3N4 As efficient visible light photocatalysts for H2 evolution and RhB degradation. ACS Sustain Chem Eng 6:6342–6349

    Article  CAS  Google Scholar 

  13. Bellardita M, García-López EI, Marcì G, Krivtsov I, García JR, Palmisano L (2018) Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4. Appl Catal B 220:222–233

    Article  CAS  Google Scholar 

  14. Raziq F, Humayun M, Ali A, Wang T, Khan A, Fu Q, Luo W, Zeng H, Zheng Z, Khan B, Shen H, Zu X, Li S, Qiao L (2018) Synthesis of S-Doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities. Appl Catal B 237:1082–1090

    Article  CAS  Google Scholar 

  15. Bai J, Lv W, Ni Z, Wang Z, Chen G, Xu H, Qin H, Zheng Z, Li X (2018) Integrating MoS2 on sulfur-doped porous g-C3N4 iostype heterojunction hybrids enhances visible-light photocatalytic performance. J Alloy Compd 768:766–774

    Article  CAS  Google Scholar 

  16. Jourshabani M, Shariatinia Z, Badiei A (2018) High efficiency visible-light-driven Fe2O3-xSx/S-doped g-C3N4 heterojunction photocatalysts: direct Z-scheme mechanism. J Mater Sci Technol 34:1511–1525

    Article  CAS  Google Scholar 

  17. Li X, Xing J, Zhang C, Han B, Zhang Y, Wen T, Leng R, Jiang Z, Ai Y, Wang X (2018) Adsorption of lead on sulfur-doped graphitic carbon nitride nanosheets: experimental and theoretical calculation study. ACS Sustain Chem Eng 6:10606–10615

    Article  CAS  Google Scholar 

  18. Wang Y, Tian Y, Lang Z, Guan W, Yan L (2018) A highly efficient Z-scheme B-doped g-C3N4/SnS2 photocatalyst for CO2 reduction reaction: a computational study. J Mater Chem A 6:21056–21063

    Article  CAS  Google Scholar 

  19. Yu H, Jiang X, Shao Z, Feng J, Yang X, Liu Y (2018) Metal-free half-metallicity in B-doped gh-C3N4 systems. Nanoscale Res Lett 13:57–63

    Article  PubMed  PubMed Central  Google Scholar 

  20. Luo Y, Wang J, Yu S, Cao Y, Ma K, Pu Y, Zou W, Tang C, Gao F, Dong L (2018) Nonmetal element doped g-C3N4 with enhanced H2 evolution under visible light irradiation. J Mater Res 33:1268–1278

    Article  CAS  Google Scholar 

  21. Kong W, Zhang X, Chang B, Zhou Y, Zhang S, He G, Yang B, Li J (2018) Fabrication of B doped g-C3N4/TiO2 heterojunction for efficient photoelectrochemical water oxidation. Electrochim Acta 282:767–774

    Article  CAS  Google Scholar 

  22. Cazelles R, Liu J, Antonietti M (2015) Hybrid C3N4/fluorine-doped tin oxide electrode transfers hydride for 1,4-NADH cofactor regeneration. ChemElectroChem 2:333–337

    Article  CAS  Google Scholar 

  23. Ding K, Wen L, Huang M, Zhang Y, Lu Y, Chen Z (2016) How does the B, F-monodoping and B/F-codoping affect the photocatalytic water-splitting performance of g-C3N4? Phys Chem Chem Phys 18:19217–19226

    Article  CAS  PubMed  Google Scholar 

  24. Zhu B, Zhang J, Jiang C, Bei C, Yu J (2017) First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst. Appl Catal B 207:27–34

    Article  CAS  Google Scholar 

  25. Dong G, Zhao K, Zhang L (2012) Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem Commun 48:6178–6180

    Article  CAS  Google Scholar 

  26. Hong X, Kang X, Liu G, Cheng H (2015) Increasing photocatalytic activity of graphitic carbon nitride by carbon doping through in situ polycondensation. Imaging Sci Photo Chem 33:434–440

    CAS  Google Scholar 

  27. Su FY, Xu CQ, Yu YX (2016) Carbon self-doping induced activation of n–π* electronic transitions of g-C3N4 nanosheets for efficient photocatalytic H2 evolution. ChemCatChem 8:3527–3535

    Article  Google Scholar 

  28. Li D, Zhu M (2016) Metal–nitrogen (Co-g-C3N4) doping of surface-modified single-walled carbon nanohorns for use as an oxygen reduction electrocatalyst. RSC Adv 6:25670–25677

    Article  Google Scholar 

  29. Shi R, Li Z, Yu H, Shang L, Zhou C, Waterhouse GIN, Wu LZ, Zhang T (2017) Effect of nitrogen doping level on the performance of N-doped carbon quantum Dot/TiO2 composites for photocatalytic hydrogen evolution. Chemsuschem 10:4650–4656

    Article  CAS  PubMed  Google Scholar 

  30. Huang Y, Yan Q, Yan H, Tang Y, Chen S, Yu Z, Tian C, Jiang B (2017) Layer stacked iodine and phosphorus Co-doped C3N4 for enhanced visible-light photocatalytic hydrogen evolution. ChemCatChem 9:4083–4089

    Article  CAS  Google Scholar 

  31. Kresse G, Furthmller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter Mater Phys 54:11169–11186

    Article  CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  33. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B Condens Matter Mater Phys 50:17953–17979

    Article  Google Scholar 

  34. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B Condens Matter Mater Phys 59:1758–1775

    Article  CAS  Google Scholar 

  35. Zhou W, Umezawa N, Ma R, Sakai N, Ebina Y, Sano K, Liu M, Ishida Y, Aida T, Sasaki T (2018) Spontaneous direct band gap, high hole mobility, and huge exciton energy in atomic-thin TiO2 nanosheet. Chem Mater 30:6449–6457

    Article  CAS  Google Scholar 

  36. Zhang R, Niu S, Zhang X, Jiang Z, Zheng J, Guo C (2019) Combination of experimental and theoretical investigation on Ti-doped g-C3N4 with improved photo-catalytic activity. Appl Surf Sci 489:427–434

    Article  CAS  Google Scholar 

  37. Gai Y, Li J, Li S, Xia J, Wei S (2009) Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity. Phys Rev Lett 102:036402

    Article  PubMed  Google Scholar 

  38. Yin W, Tang H, Wei S, Al-Jassim MM, Turner J, Yan Y (2010) Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO2. Phys Rev B 82:045106

    Article  Google Scholar 

  39. Zhang H, Zuo X, Tang H, Li G, Zhou Z (2015) Origin of photoactivity in graphitic carbon nitride and strategies for enhancement of photocatalytic efficiency: insights from first-principles computations. Phys Chem Chem Phys 17:6280–6288

    Article  CAS  PubMed  Google Scholar 

  40. Yan H, Yang H (2011) TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J Alloy Compd 509:L26–L29

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China under Grant No. 12035006, 11975173 and Educational Commission of Hubei Province of China under Grant No. 2020CFB127. And the numerical calculation is supported by HighPerformance Computing Center of Wuhan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houmei Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2140 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Cai, X., Li, X. et al. First-Principles Study on Performance of g-C3N4 Self Codoped with C–N Pair as Photocatalyst in Water Splitting Process. Catal Lett 154, 2562–2568 (2024). https://doi.org/10.1007/s10562-023-04522-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04522-9

Keywords

Navigation