Skip to main content
Log in

Two stage approach to functional network reconstruction for binary time-series

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The deduction of network connectivity from the observed node dynamics is costly in large networks. The theoretical number of possible networks containing N nodes connected by binary links grows exponentially with N square. This problem is often termed “the curse of dimensionality”. In practice, unfeasible long time-series and a high computational cost are required to detect the connectivity of a network from its observations. Given the large number of time-series currently assembled in all domains of science, a solution to this inverse problem in large networks is required. We here propose a solution to the inverse problem in large networks of binary variables through a redefinition of the problem. Instead of attempting to deduce the links of a network, we redefine the problem into the prediction of future dynamics. Specifically, we show that links between nodes can be divided into links affecting the future dynamics and links that do not. We further show that hard-to-predict links belong to the second group, and as such can be ignored when predicting future dynamics. This division is applied through a two stage algorithm. In the first stage, the vast majority of potential links (pairs of nodes) is removed, since even if they exist they do not affect the dynamics. At the second stage, a rapid high-precision estimate of the predictable links is performed using a modified partial correlation algorithm. A good predictor for the classification of potential links is the mutual information between a node-pair. Similarly, some nodes have practically no variability and as such have practically no effect on the dynamics of other nodes. The links to and from such nodes are hard to predict. We show that a two stage algorithm can be applied to these nodes with similar results. This methodology does not reproduce the network that originally induced the dynamics, but its prediction of future dynamics is similar to the one of the real network. The current analysis is limited to reconstruction using partial correlation methods. However, the same principle can be applied to other reconstruction methods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Cocco, R. Monasson, M. Weigt, PLoS Comput. Biol. 9, e1003176 (2013)

    Article  ADS  Google Scholar 

  2. A. Coucke, G. Uguzzoni, F. Oteri, S. Cocco, R. Monasson, M. Weigt, J. Chem. Phys. 145, 174102 (2016)

    Article  ADS  Google Scholar 

  3. Y. Roudi, B. Dunn, J. Hertz, Curr. Opin. Neurobiol. 32, 38 (2015)

    Article  Google Scholar 

  4. D. Chicharro, S. Panzeri, in Information-based Methods for Neuroimaging: Analyzing Structure, Function and Dynamics (Frontiers Media SA, 2015), p. 148

  5. D.A. Smirnov, Phys. Rev. E 90, 062921 (2014)

    Article  ADS  Google Scholar 

  6. G. Tavoni, S. Cocco, R. Monasson, J. Comput. Neurosci. 41, 269 (2016)

    Article  MathSciNet  Google Scholar 

  7. J. Barton, S. Cocco, J. Stat. Mech.: Theory Exp. 2013, P03002 (2013)

    Article  Google Scholar 

  8. A.G. Nedungadi, G. Rangarajan, N. Jain, M. Ding, J. Comput. Neurosci. 27, 55 (2009)

    Article  MathSciNet  Google Scholar 

  9. N. Miyakawa, N. Katsumata, D.T. Blake, M.M. Merzenich, M. Tanifuji, J. Neurosci. Methods 211, 114 (2012)

    Article  Google Scholar 

  10. E. Bullmore, O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009)

    Article  Google Scholar 

  11. M. Jalili, G.K. Maria, J. Integr. Neurosci. 10, 213 (2011)

    Article  Google Scholar 

  12. K.J. Blinowska, R. Kuś, M. Kamiński, Phys. Rev. E 70, 050902 (2004)

    Article  ADS  Google Scholar 

  13. D.Y. Kenett, M. Tumminello, A. Madi, G. Gur-Gershgoren, R.N. Mantegna, E. Ben-Jacob, PLoS One 5, e15032 (2010)

    Article  ADS  Google Scholar 

  14. M. Billio, M. Getmansky, A.W. Lo, L. Pelizzon, J. Finan. Econ. 104, 535 (2012)

    Article  Google Scholar 

  15. J. Runge, V. Petoukhov, J.F. Donges, J. Hlinka, N. Jajcay, M. Vejmelka, D. Hartman, N. Marwan, M. Paluš, J. Kurths, Nat. Commun. 6, 8502 (2015)

    Article  ADS  Google Scholar 

  16. J. Runge, J. Heitzig, V. Petoukhov, J. Kurths, Phys. Rev. Lett. 108, 258701 (2012)

    Article  ADS  Google Scholar 

  17. U. Triacca, Theor. Appl. Climatol. 81, 133 (2005)

    Article  ADS  Google Scholar 

  18. J. Friedman, T. Hastie, R. Tibshirani, in The Elements of Statistical Learning (Springer series in statistics Springer, Berlin, 2001), Vol. 1

  19. G. Gerstein, in Methods for Neural Ensemble Recording, edited by M. Nicolelis (CRC Press, Boca Raton, 1999), pp. 157–177

  20. M. Müller, K. Wegner, U. Kummer, G. Baier, Phys. Rev. E 73, 046106 (2006)

    Article  ADS  Google Scholar 

  21. L. Laloux, P. Cizeau, M. Potters, J.-P. Bouchaud, Int. J. Theor. Appl. Finance 3, 391 (2000)

    Article  Google Scholar 

  22. G. Lohmann, J. Stelzer, J. Neumann, N. Ay, R. Turner, Brain Connect. 3, 223 (2013)

    Article  Google Scholar 

  23. M. Mézard, J. Sakellariou, J. Stat. Mech.: Theory Exp. 2011, L07001 (2011)

    Google Scholar 

  24. Y. Roudi, J. Hertz, J. Stat. Mech.: Theory Exp. 2011, P03031 (2011)

    Article  Google Scholar 

  25. I.H. Stevenson, J.M. Rebesco, L.E. Miller, K.P. Körding, Curr. Opin. Neurobiol. 18, 582 (2008)

    Article  Google Scholar 

  26. K. Baba, R. Shibata, M. Sibuya, Aust. New Zealand J. Stat. 46, 657 (2004)

    Article  Google Scholar 

  27. L.A. Baccalá, K. Sameshima, Biol. Cybern. 84, 463 (2001)

    Article  Google Scholar 

  28. J. Massey, in Proc. Int. Symp. Inf. Theory Applic. (ISITA-90), Citeseer, 1990, pp. 303–305

  29. P.-O. Amblard, O.J. Michel, Entropy 15, 113 (2012)

    Article  ADS  Google Scholar 

  30. V.A. Vakorin, O.A. Krakovska, A.R. McIntosh, J. Neurosci. Methods 184, 152 (2009)

    Article  Google Scholar 

  31. A. Papana, D. Kugiumtzis, P.G. Larsson, Int. J. Bifurc. Chaos 22, 1250222 (2012)

    Article  Google Scholar 

  32. D. Kugiumtzis, Eur. Phys. J. Special Topics 222, 401 (2013)

    Article  ADS  Google Scholar 

  33. X. Zhang, J. Zhao, J.-K. Hao, X.-M. Zhao, L. Chen, Nucleic Acids Res. 43, e31 (2014)

    Article  Google Scholar 

  34. R.A. Fisher, Metron 3, 329 (1924)

    Google Scholar 

  35. A. Baralla, W.I. Mentzen, A. De La Fuente, Ann. N. Y. Acad. Sci. 1158, 246 (2009)

    Article  ADS  Google Scholar 

  36. D. Marbach, R.J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, G. Stolovitzky, Proc. Natl. Acad. Sci. 107, 6286 (2010)

    Article  ADS  Google Scholar 

  37. J. Runge, J. Heitzig, V. Petoukhov, J. Kurths, Phys. Rev. Lett. 108, 258701 (2012)

    Article  ADS  Google Scholar 

  38. J. Runge, R.V. Donner, J. Kurths, Phys. Rev. E 91, 052909 (2015)

    Article  ADS  Google Scholar 

  39. M. Songhorzadeh, K. Ansari-Asl, A. Mahmoudi, Comput. Biol. Med. 79, 110 (2016)

    Article  Google Scholar 

  40. J. Sun, D. Taylor, E.M. Bollt, SIAM J. Appl. Dyn. Syst. 14, 73 (2015)

    Article  MathSciNet  Google Scholar 

  41. D. Marinazzo, M. Pellicoro, S. Stramaglia, Comput. Math. Methods Med. 2012, 303601 (2012)

    Article  Google Scholar 

  42. E. Siggiridou, C. Koutlis, A. Tsimpiris, V.K. Kimiskidis, D. Kugiumtzis, in Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE (IEEE, 2015), pp. 4041–4044

  43. P. Wollstadt, U. Meyer, M. Wibral, PLoS One 10, e0140530 (2015)

    Article  Google Scholar 

  44. C.J. Needham, J.R. Bradford, A.J. Bulpitt, D.R. Westhead, PLoS Comput. Biol. 3, e129 (2007)

    Article  ADS  Google Scholar 

  45. J. Listgarden, D. Heckerman, https://doi.org/arXiv:1206.5269 (2012)

  46. N. Friedman, Science 303, 799 (2004)

    Article  ADS  Google Scholar 

  47. H. Dale, J. Roy. Soc. Med. 28, 319 (1935)

    Google Scholar 

  48. J.C. Eccles, P. Fatt, K. Koketsu, J. Physiol. 126, 524 (1954)

    Article  Google Scholar 

  49. P. Erds, A. Rényi, Publ. Math. Debrecen 6, 290 (1959)

    MathSciNet  Google Scholar 

  50. L.R. Varshney, B.L. Chen, E. Paniagua, D.H. Hall, D.B. Chklovskii, PLoS Comput. Biol. 7, e1001066 (2011)

    Article  ADS  Google Scholar 

  51. T. Schreiber, Phys. Rev. Lett. 85, 461 (2000)

    Article  ADS  Google Scholar 

  52. Y. Roudi, J. Hertz, Phys. Rev. Lett. 106, 048702 (2011)

    Article  ADS  Google Scholar 

  53. I.H. Stevenson, K.P. Kording, Nat. Neurosci. 14, 139 (2011)

    Article  Google Scholar 

  54. E.A. Naumann, A.R. Kampff, D.A. Prober, A.F. Schier, F. Engert, Nat. Neurosci. 13, 513 (2010)

    Article  Google Scholar 

  55. O. Stetter, D. Battaglia, J. Soriano, T. Geisel, PLoS Comput. Biol. 8, e1002653 (2012)

    Article  ADS  Google Scholar 

  56. T. Schreiber, Phys. Rev. Lett. 85, 461 (2000)

    Article  ADS  Google Scholar 

  57. R.C. Lambert, C. Tuleau-Malot, T. Bessaih, V. Rivoirard, Y. Bouret, N. Leresche, P. Reynaud-Bouret, J. Neurosci. Methods 297, 9 (2018)

    Google Scholar 

  58. V. Pernice, S. Rotter, J. Stat. Mech.: Theory Exp. 2013, P03008 (2013)

    Article  Google Scholar 

  59. M. Paluš, in Advances in Nonlinear Geosciences (Springer, 2018), pp. 427–463

  60. D.H. Ackley, G.E. Hinton, T.J. Sejnowski, Cogn. Sci. 9, 147 (1985)

    Article  Google Scholar 

  61. H.J. Kappen, F.d.B. Rodríguez, Neural Comput. 10, 1137 (1998)

    Article  Google Scholar 

  62. T. Tanaka, Phys. Rev. E 58, 2302 (1998)

    Article  ADS  Google Scholar 

  63. Y. Roudi, J. Tyrcha, J. Hertz, Phys. Rev. E 79, 051915 (2009)

    Article  ADS  Google Scholar 

  64. S. Cocco, R. Monasson, V. Sessak, Phys. Rev. E 83, 051123 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navit Dori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dori, N., Piedrahita, P. & Louzoun, Y. Two stage approach to functional network reconstruction for binary time-series. Eur. Phys. J. B 92, 45 (2019). https://doi.org/10.1140/epjb/e2019-80605-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-80605-6

Keywords

Navigation