Skip to main content
Log in

Band folding, strain, confinement, and surface relaxation effects on the electronic structure of GaAs and GaP: from bulk to nanowires

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

It is common to find materials that show strikingly different properties between its bulk and nanometric forms. In this paper we show how to link the electronic structures of two III-V systems, one a direct gap material, GaAs, and the other an indirect gap material, GaP, from their bulks right down to the shape of thin nanowires. The understanding of how these changes occur represents a scientific and technological challenge and is relevant for the design and prediction of novel nanostructured materials. GaAs and GaP bulk and nanowire systems are studied in the zinc-blende and wurtzite structures both free of strain and subjected to biaxial strains perpendicular to the [111]/[0001] direction (the kind of strain that the materials are subjected to when grown one on top of the other). We provide an interpretation of the band structure of nanowires, grown along the [111] (zinc-blende structure) and the [0001] (wurtzite structure) directions, in terms of the bulk band structures of the corresponding binary compounds. The procedure reveals the origin of the valence and conduction valleys relevant to determine the nature (direct or indirect) of the band gaps and the kind (direct and pseudodirect) of the valence to conduction transitions. Thus, by calculating only the bulk bands it is possible to describe the behavior of the nanowire bands even for very thin nanowires. The effects on the band structures due to biaxial strain are analogously analyzed, providing for bulk GaP the first results in literature. The role of confinement, and surface relaxation, in determining the nanowire electronic structure of thin nanowires are analyzed separately revealing that the change in the nature of the band gap is due mainly to surface relaxation effects, not confinement. We show that the change of the gap (indirect/direct) from the bulk to the 1D systems is mainly due to the competition between the energies of bulk conduction valleys which are differently influenced by confinement and strain. This effect is shown also by other low dimensional materials like the 2D materials extending only few atomic layers in one dimension. The competing valleys are already present in the bulk band structure. While the main effect of confinement is to open all gaps, it is not necessarily the main cause of the direct/indirect change in the nature of the electronic gap as instead is usually claimed in the literature. Our study can be used to understand and engineer the structure of many nanostructures systems by just better analysing the behavior of the bulk bands.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Berg, S. Yazdi, A. Nowzari, K. Storm, V. Jain, N. Vainorius, L. Samuelson, J.B. Wagne, M.T. Borgström, Nano Lett. 16, 656 (2016)

    ADS  Google Scholar 

  2. C. Li, S. Liu, T.S. Luk, J.J. Figiel, I. Brener, S.R.J. Brueck, G.T. Wang, Nanoscale 8, 5682 (2016)

    ADS  Google Scholar 

  3. I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J.P. Gilboy, C. Sundvall, A. Dahlgren, K.E. Svensson, N. Anttu, M.T. Björk, L. Samuelson, IEEE J. Photovoltaics 6, 185 (2016)

    Google Scholar 

  4. M. Yao, S. Cong, S. Arab, N. Huang, M.L. Povinelli, S.B. Cronin, P.D. Dapkus, C. Zhou, Nano Lett. 15, 7217 (2015)

    ADS  Google Scholar 

  5. A. Konar, J. Mathew, K. Nayak, M. Bajaj, R.K. Pandey, S. Dhara, K.V.R.M. Murali, M.M. Deshmukh, Nano Lett. 15, 1684 (2015)

    ADS  Google Scholar 

  6. L.-F. Shen, S. Yip, Z.-X. Yang, M. Fang, T. Hung, E.Y.B. Pun, J.C. Ho, Sci. Rep. 15, 16871 (2015)

    ADS  Google Scholar 

  7. Y. Zhang, J. Wu, M. Aagesen, H. Liu, J. Phys. D: Appl. Phys. 48, 463001 (2015)

    ADS  Google Scholar 

  8. J. Greil, S. Assali, Y. Isono, A. Belabbes, F. Bechstedt, F.O. Valega Mackenzie, A.Y. Silov, E.P.A.M. Bakkers, J.E.M. Haverkort, Nano Lett. 16, 3703 (2016)

    ADS  Google Scholar 

  9. J. Wu, A. Ramsay, A. Sanchez, Y. Zhang, D. Kim, F. Brossard, X. Hu, M. Benamara, M.E. Ware, Y.I. Mazur, G.J. Salamo, M. Aagesen, Z. Wang, H. Liu, Nano Lett. 16, 504 (2015)

    ADS  Google Scholar 

  10. D. Spirkoska, J. Arbiol, A. Gustafsson, S. Conesa-Boj, F. Glas, I. Zardo, M. Heigoldt, M.H. Gass, A.L. Bleloch, S. Estrade, M. Kaniber, J. Rossler, F. Peiro, J.R. Morante, G. Abstreiter, L. Samuelson, A. Fontcuberta i Morral, Phys. Rev. B 80, 245325 (2009)

    ADS  Google Scholar 

  11. X. Peng, A. Copple, Phys. Rev. B 87, 115308 (2014)

    ADS  Google Scholar 

  12. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    ADS  Google Scholar 

  13. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    ADS  Google Scholar 

  14. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  15. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    ADS  Google Scholar 

  16. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    ADS  Google Scholar 

  17. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    ADS  Google Scholar 

  18. D.R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)

    ADS  Google Scholar 

  19. M. Rosini, M.C. Righi, P. Kratzer, R. Magri, Phys. Rev. B 79, 075302 (2009)

    ADS  Google Scholar 

  20. M. Rosini, R. Magri, ACS Nano 4, 6021 (2010)

    Google Scholar 

  21. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  22. F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)

    ADS  Google Scholar 

  23. O. Madelung,Semiconductors: Data Handbook (Springer, 2004)

  24. C.-Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Phys. Rev. B 46, 10086 (1992)

    ADS  Google Scholar 

  25. C. Panse, D. Kriegner, F. Bechstedt, Phys. Rev. B 84, 075217 (2011)

    ADS  Google Scholar 

  26. T. Cheiwchanchamnangij, W.R.L. Lambrecht, Phys. Rev. B 84, 035203 (2011)

    ADS  Google Scholar 

  27. A. Belabbes, C. Panse, J. Furthmüller, F. Bechstedt, Phys. Rev. B 86, 075208 (2012)

    ADS  Google Scholar 

  28. L.G. Ferreira, M. Marques, L.K. Teles, Phys. Rev. B 78, 125116 (2008)

    ADS  Google Scholar 

  29. L.G. Ferreira, M. Marques, L.K. Teles, AIP Adv. 1, 032119 (2011)

    ADS  Google Scholar 

  30. C.-Y. Yeh, S.-H. Wei, A. Zunger, Phys. Rev. B 50, 2715 (1994)

    ADS  Google Scholar 

  31. A. De, C.E. Pryor, Phys. Rev. B 81, 155210 (2010)

    ADS  Google Scholar 

  32. M. Heiss, S. Conesa-Boj, J. Ren, H.-H. Tseng, A. Gali, A. Rudolph, E. Uccelli, F. Peiró, J.R. Morante, D. Schuh, E. Reiger, E. Kaxiras, J. Arbiol, A. Fontcuberta i Morral, Phys. Rev. B 83, 045303 (2011)

    ADS  Google Scholar 

  33. B. Ketterer, M. Heiss, M.J. Livrozet, A. Rudolph, E. Reiger, A. Fontcuberta i Morral, Phys. Rev. B 83, 125307 (2011)

    ADS  Google Scholar 

  34. I. Regolin, V. Khorenko, W. Prost, F.J. Tegude, D. Sudfeld, J. Kästner, G. Dumpich, K. Hitzbleck, H. Wiggers, J. Appl. Phys. 101, 054318 (2007)

    ADS  Google Scholar 

  35. I. Soshnikov, G. Cirlin, V. Dubrovskii, A. Veretekha, A. Gladyshev, V. Ustinov, Phys. Solid State 48, 786 (2006)

    ADS  Google Scholar 

  36. N. Vainorius, D. Jacobsson, S. Lehmann, A. Gustafsson, K.A. Dick, L. Samuelson, M.-E. Pistol, Phys. Rev. B 89, 165423 (2014)

    ADS  Google Scholar 

  37. Z. Zanolli, F. Fuchs, J. Furthmüller, U. von Barth, F. Bechstedt, Phys. Rev. B 75, 245121 (2007)

    ADS  Google Scholar 

  38. P. Kusch, S. Breuer, M. Ramsteiner, L. Geelhaar, H. Riechert, S. Reich, Phys. Rev. B 86, 075317 (2012)

    ADS  Google Scholar 

  39. P. Kusch, E. Grelich, C. Somaschini, E. Luna, M. Ramsteiner, L. Geelhaar, H. Riechert, S. Reich, Phys. Rev. B 89, 045310 (2014)

    ADS  Google Scholar 

  40. F. Martelli, G. Priante, S. Rubini, Semicond. Sci. Technol. 30, 055020 (2015)

    ADS  Google Scholar 

  41. T.B. Hoang, A.F. Moses, H.L. Zhou, D.L. Dheeraj, B.O. Fimland, H. Weman, Appl. Phys. Lett. 94, 133105 (2009)

    ADS  Google Scholar 

  42. U. Jahn, J. Lähnemann, C. Pfüller, O. Brandt, S. Breuer, B. Jenichen, M. Ramsteiner, L. Geelhaar, H. Riechert, Phys. Rev. B 85, 045323 (2012)

    ADS  Google Scholar 

  43. M. Hjort, S. Lehmann, J. Knutsson, R. Timm, D. Jacobsson, D. Lundgren, K.A. Dick, A. Mikkelsen, Nano Lett. 13, 4492 (2013)

    ADS  Google Scholar 

  44. L. Ahtapodov, J. Todorovic, P. Olk, T. Mjåland T. P. Slåttnes, D.L. Dheeraj, A.T.J. van Helvoort, B.-O. Fimland, H. Weman, Nano Lett. 12, 6090 (2012)

    ADS  Google Scholar 

  45. R. Gurwitz, A. Tavor, L. Karpeles, I. Shalish, W. Yi, G. Seryogin, V. Narayanamurti, Appl. Phys. Lett. 100, 191602 (2012)

    ADS  Google Scholar 

  46. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    ADS  Google Scholar 

  47. C.B.E. Santos, T.M. Schmidt, J. Appl. Phys. 108, 103715 (2010)

    ADS  Google Scholar 

  48. R. Mohammad, Ş. Katırcıoğlu, Physica E 73, 213 (2015)

    ADS  Google Scholar 

  49. A. Copple, N. Ralston, X. Peng, Appl. Phys. Lett. 100, 193108 (2012)

    ADS  Google Scholar 

  50. X. Yang, H. Shu, P. Liang, D. Cao, X. Chen, J. Phys. Chem. C 119, 12030 (2015)

    Google Scholar 

  51. X. Yang, H. Shu, X. Chen, J. Alloys Compd. 682, 571 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Lange dos Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, C.L., Piquini, P. & Magri, R. Band folding, strain, confinement, and surface relaxation effects on the electronic structure of GaAs and GaP: from bulk to nanowires. Eur. Phys. J. B 92, 191 (2019). https://doi.org/10.1140/epjb/e2019-100288-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100288-y

Keywords

Navigation