Skip to main content
Log in

Investigation of strain redistribution mechanism in α titanium by image-based crystal plasticity analysis

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Mechanisms of strain localization and localized activation of slip systems in α titanium were investigated using a crystal plasticity finite element (CPFE) method. A microscopic image of polycrystalline α titanium was obtained by electron back scatter diffraction (EBSD), and the data was converted from the microscopic image into the geometric model for the CPFE analysis. The uniaxial tensile deformation of the model was numerically reproduced by the CPFE method employing a dislocation density based constitutive equation. The results showed that the strain distribution corresponds well with that obtained by the experiment when the ratio of critical resolved shear stress (CRSS) employed in the numerical simulation is basal:prismatic ⟨a⟩:1st-pyramidal ⟨a⟩:1st-pyramidal ⟨c + a⟩:2nd-pyramidal ⟨c + a⟩ = 1.0:1.0:1.3:2.0:2.0. Next, numerical simulations were performed by changing the ratio of CRSS among the slip systems but keeping all other conditions the same as those of the above uniaxial tensile analysis. The results showed that strain redistribution typically occurs between hard and soft regions with high and low CRSSs for the primary slip systems; this redistribution resulted in a localized higher strain and activation of slip systems. However, localized activation of slip systems was observed even in slip systems with higher CRSS; the mechanism could be explained by the strain redistribution in the tensile direction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Boyer, G. Weisch, E.W. Collings,Materials Properties Handbook: Titanium Alloys (ASM International, 1994)

  2. G. Lütjering, Mater. Sci. Eng. A 243, 32 (1998)

    Google Scholar 

  3. S. Ishihara, A.J. Mcevily, ICF12 2, 1 (2009)

    Google Scholar 

  4. S.I. Rokhlin, J.Y. Kim, B. Xie, B. Zoofan, NDT & E Int. 40, 462 (2007)

    Google Scholar 

  5. D. Ozturk, A.L. Pilchak, S. Ghosh, Scr. Mater. 127, 15 (2017)

    Google Scholar 

  6. R.J. Asaro, J.R. Rice, J. Mech. Phys. Solids 25, 309 (1977)

    ADS  Google Scholar 

  7. D. Peirce, R.J. Asaro, A. Needleman, Acta Metall. 30, 1087 (1982)

    Google Scholar 

  8. R. Hook, J. Hirth, Acta Metall. 15, 535 (1967)

    Google Scholar 

  9. R. Hook, J. Hirth, Acta Metall. 15, 1099 (1967)

    Google Scholar 

  10. R. Kondou, T. Ohashi, S. Miura, J. Comput. Sci. Technol. 2, 162 (2008)

    Google Scholar 

  11. K. Chatterjee, A. Venkataraman, T. Garbaciak, J. Rotella, M.D. Sangid, A.J. Beaudoin, P. Kenesei, J.S. Park, A.L. Pilchak, Int. J. Solids Struct. 94–95, 35 (2016)

    Google Scholar 

  12. W.J. Evans, Mater. Sci. Eng. A 243, 89 (1998)

    Google Scholar 

  13. P.J. Ashton, T.S. Jun, Z. Zhang, T.B. Britton, A.M. Harte, S.B. Leen, F.P.E. Dunne, Int. J. Fatigue 100, 377 (2017)

    Google Scholar 

  14. S. Hémery, A. Nait-Ali, P. Villechaise, Mech. Mater. 109, 1 (2017)

    Google Scholar 

  15. Y. Kawano, T. Ohashi, T. Mayama, R. Kondou, Int. J. Mech. Sci. 146–147, 475 (2018)

    Google Scholar 

  16. V. Volterra, Ann. Sci. Éc. Norm. Supér. 24, 401 (1907)

    Google Scholar 

  17. X. Wu, S.R. Kalidindi, C. Necker, A.A. Salem, Acta Mater. 55, 423 (2007)

    Google Scholar 

  18. H. Li, D.E. Mason, T.R. Bieler, C.J. Boehlert, M.A. Crimp, Acta Mater. 61, 7555 (2013)

    Google Scholar 

  19. T. Hama, A. Kobuki, H. Takuda, Int. J. Plast. 91, 77 (2017)

    Google Scholar 

  20. L. Wang, Z. Zheng, H. Phukan, P. Kenesei, J.S. Park, J. Lind, R.M. Suter, T.R. Bieler, Acta Mater. 132, 598 (2017)

    Google Scholar 

  21. B. Barkia, V. Doquet, J.P. Couzinié, I. Guillot, E. Héripré, Mater. Sci. Eng. A 636, 91 (2015)

    Google Scholar 

  22. P.S. Follansbee, G.T. Gray, Metall. Trans. A 20, 863 (1989)

    Google Scholar 

  23. T.S. Jun, Z. Zhang, G. Sernicola, F.P.E. Dunne, T.B. Britton, Acta Mater. 107, 298 (2016)

    Google Scholar 

  24. A. Shahba, S. Ghosh, Int. J. Plast. 87, 48 (2016)

    Google Scholar 

  25. D. Raabe, M. Sachtleber, Z. Zhao, F. Roters, S. Zaefferer, Acta Mater. 49, 3433 (2001)

    Google Scholar 

  26. Z. Zhao, M. Ramesh, D. Raabe, A.M. Cuitiño, R. Radovitzky, Int. J. Plast. 24, 2278 (2008)

    Google Scholar 

  27. C.R. Weinberger, C.C. Battaile, H. Lim, J.D. Carroll, B.L. Boyce, T.E. Buchheit, Int. J. Plast. 60, 1 (2014)

    Google Scholar 

  28. C.C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters, D. Raabe, Acta Mater. 81, 386 (2014)

    Google Scholar 

  29. A. Guery, F. Hild, F. Latourte, S. Roux, Int. J. Plast. 81, 249 (2016)

    Google Scholar 

  30. Z. Zhang, D. Lunt, H. Abdolvand, A.J. Wilkinson, M. Preuss, F.P.E. Dunne, Int. J. Plast. 108, 88 (2018)

    Google Scholar 

  31. Y. Kawano, T. Ohashi, T. Mayama, M. Mitsuhara, Y. Okuyama, M. Sato, Mater. Trans. 60, (2019)

    Google Scholar 

  32. Y. Kawano, T. Ohashi, T. Mayama, M. Tanaka, M. Sakamoto, Y. Okuyama, M. Sato, Trans. JSME (in Japanese) 84, 17 (2018)

    Google Scholar 

  33. A.J. Wilkinson, Scr. Mater. 44, 2379 (2001)

    Google Scholar 

  34. M. Kamaya, A.J. Wilkinson, J.M. Titchmarsh, Nucl. Eng. Des. 235, 713 (2005)

    Google Scholar 

  35. M. Kamaya, A.J. Wilkinson, J.M. Titchmarsh, Acta Mater. 54, 539 (2006)

    Google Scholar 

  36. M. Kamaya, Mater. Charact. 66, 56 (2012)

    Google Scholar 

  37. W.H. Peters, W.F. Ranson, Opt. Eng. 21, 427 (1982)

    ADS  Google Scholar 

  38. T. Morikawa, Y. Mitani, K. Higashida, Mater. Sci. Forum 638–642, 1574 (2010)

    Google Scholar 

  39. G. Martin, C.W. Sinclair, R.A. Lebensohn, Mater. Sci. Eng. A 603, 37 (2014)

    Google Scholar 

  40. P. Gao, Y. Li, R. Wu, Z. Lei, Y. Cai, M. Zhan, Materials (Basel) 11, 2194 (2018)

    ADS  Google Scholar 

  41. R. Hill, J. Mech. Phys. Solids 14, 95 (1966)

    ADS  Google Scholar 

  42. T. Ohashi, Philos. Mag. A 70, 793 (1994)

    ADS  Google Scholar 

  43. T. Ohashi, Trans. Jpn. Inst. Met. 28, 906 (1987)

    Google Scholar 

  44. T. Ohashi, Int. J. Plast. 21, 2071 (2005)

    Google Scholar 

  45. T. Ohashi, Philos. Mag. Lett. 75, 51 (1997)

    ADS  Google Scholar 

  46. T. Ohashi, R. Kondou, Philos. Mag. 93, 366 (2013)

    ADS  Google Scholar 

  47. E.S. Fisher, C.J. Renken, Phys. Rev. A 135, 482 (1964)

    ADS  Google Scholar 

  48. D. Gloaguen, G. Oum, V. Legrand, J. Fajoui, S. Branchu, Acta Mater. 61, 5779 (2013)

    Google Scholar 

  49. M.R. Bache, Int. J. Fatigue 25, 1079 (2003)

    Google Scholar 

  50. F.P.E. Dunne, A. Walker, D. Rugg, Proc. R. Soc. London A 463, 1467 (2007)

    ADS  Google Scholar 

  51. X. Wu, S. Kalidindi, C. Necker, A. Salem, Acta Mater. 55, 423 (2007)

    Google Scholar 

  52. B. Barkia, V. Doquet, J.P. Couzinié, I. Guillot, E. Héripré, Mater. Sci. Eng. A 636, 91 (2015)

    Google Scholar 

  53. J.M. Oh, B.G. Lee, S.W. Cho, S.W. Lee, G.S. Choi, J.W. Lim, Met. Mater. Int. 17, 733 (2011)

    Google Scholar 

  54. P. Kwasniak, M. Muzyk, H. Garbacz, K.J. Kurzydlowski, Mater. Sci. Eng. A 590, 74 (2014)

    Google Scholar 

  55. D. Tromans, Ijrras 6, 462 (2011)

    MathSciNet  Google Scholar 

  56. F.P.E. Dunne, D. Rugg, Fatigue Fract. Eng. Mater. Struct. 31, 949 (2008)

    Google Scholar 

  57. Z. Zheng, D.S. Balint, F.P.E. Dunne, Acta Mater. 127, 43 (2017)

    Google Scholar 

  58. D.C. Pagan, P.A. Shade, N.R. Barton, J.S. Park, P. Kenesei, D.B. Menasche, J.V. Bernier, Acta Mater. 128, 406 (2017)

    Google Scholar 

  59. K.E.K. Amouzou, T. Richeton, A. Roth, M.A. Lebyodkin, T.A. Lebedkina, Int. J. Plast. 80, 222 (2016)

    Google Scholar 

  60. H. Abdolvand, J. Wright, A.J. Wilkinson, Nat. Commun. 9, 1 (2018)

    Google Scholar 

  61. M.P. Echlin, J.C. Stinville, V.M. Miller, W.C. Lenthe, T.M. Pollock, Acta Mater. 114, 164 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Kawano.

Additional information

Contribution to the Topical Issue “Multiscale Materials Modeling”, edited by Yoji Shibutani, Shigenobu Ogata, and Tomotsugu Shimokawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawano, Y., Ohashi, T., Mayama, T. et al. Investigation of strain redistribution mechanism in α titanium by image-based crystal plasticity analysis. Eur. Phys. J. B 92, 204 (2019). https://doi.org/10.1140/epjb/e2019-100238-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100238-3

Navigation