Skip to main content
Log in

Impact of temporal connectivity patterns on epidemic process

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

To provide a comprehensive view for dynamics of and on many real- world temporal networks, we investigate the interplay of temporal connectivity patterns and spreading phenomena, in terms of the susceptible-infected-removed (SIR) model on the modified activity-driven temporal network (ADTN) with memory. In particular, we focus on how the epidemic threshold of the SIR model is affected by the heterogeneity of nodal activities and the memory strength in temporal and static regimes, respectively. While strong ties (memory) between nodes inhibit the spread of epidemic to be localized, the heterogeneity of nodal activities enhances it to be globalized initially. Since the epidemic threshold of the SIR model is very sensitive to the degree distribution of nodes in static networks, we test the SIR model on the modified ADTNs with the possible set of the activity exponents and the memory exponents that generates the same degree distributions in temporal networks. We also discuss the role of spatiotemporal scaling properties of the largest cluster and the maximum degree in the epidemic threshold. It is observed that the presence of highly active nodes enables to trigger the initial spread of epidemic in a short period of time, but it also limits its final spread to the entire network. This implies that there is the trade-off between the spreading time of epidemic and its outbreak size. Finally, we suggest the phase diagram of the SIR model on ADTNs and the optimal condition for the spread of epidemic under the circumstances.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012)

    Article  ADS  Google Scholar 

  2. P. Holme, Eur. Phys. J. B 88, 234 (2015)

    Article  ADS  Google Scholar 

  3. C. Cattuto, W. Van den Broeck, A. Barrat, V. Colizza, J.F. Pinton, A. Vespignani, PLoS One 5, e11596 (2010)

    Article  ADS  Google Scholar 

  4. J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.F. Pinton, M. Quaggiotto, W. Van den Broeck, C. Régis, B. Lina et al., PLoS One 6, e23176 (2011)

    Article  ADS  Google Scholar 

  5. A. Barrat, C. Cattuto, V. Colizza, F. Gesualdo, L. Isella, E. Pandolfi, J.F. Pinton, L. Ravà, C. Rizzo, M. Romano et al., Eur. Phys. J. Special Topics 222, 1295 (2013)

    Article  ADS  Google Scholar 

  6. J. Fournet, A. Barrat, PLoS One 9, e107878 (2014)

    Article  ADS  Google Scholar 

  7. N. Perra, B. Gonçalves, R. Pastor-Satorras, A. Vespignani, Sci. Rep. 2, 469 (2012)

    Article  ADS  Google Scholar 

  8. M.S. Granovetter, Am. J. Sociol. 78, 1360 (1973)

    Article  Google Scholar 

  9. J.P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész, A.L. Barabási, Proc. Natl. Acad. Sci. USA 104, 7332 (2007)

    Article  ADS  Google Scholar 

  10. G. Miritello, E. Moro, R. Lara, Phys. Rev. E 83, 045102 (2011)

    Article  ADS  Google Scholar 

  11. C.L. Vestergaard, M. Génois, A. Barrat, Phys. Rev. E 90, 042805 (2014)

    Article  ADS  Google Scholar 

  12. J. Saramäki, E.A. Leicht, E. López, S.G.B. Roberts, F. Reed-Tsochas, R.I.M. Dunbar, Proc. Natl. Acad. Sci. USA 111, 942 (2014)

    Article  ADS  Google Scholar 

  13. L.E.C. Rocha, N. Masuda, Sci. Rep. 6, 31456 (2016)

    Article  ADS  Google Scholar 

  14. T. Kobayashi, T. Takaguchi, A. Barrat, Nat. Commun. 10, 220 (2019)

    Article  ADS  Google Scholar 

  15. M. Karsai, N. Perra, A. Vespignani, Sci. Rep. 4, 4001 (2014)

    Article  ADS  Google Scholar 

  16. A.D. Medus, C.O. Dorso, J. Stat. Mech. 2014, P09009 (2014)

    Article  Google Scholar 

  17. H. Kim, M. Ha, H. Jeong, Eur. Phys. J. B 88, 315 (2015)

    Article  ADS  Google Scholar 

  18. K. Sun, A. Baronchelli, N. Perra, Eur. Phys. J. B 88, 326 (2015)

    Article  ADS  Google Scholar 

  19. E. Ubaldi, N. Perra, M. Karsai, A. Vezzani, R. Burioni, A. Vespignani, Sci. Rep. 6, 35724 (2016)

    Article  ADS  Google Scholar 

  20. H. Kim, M. Ha, H. Jeong, Phys. Rev. E 97, 062148 (2018)

    Article  ADS  Google Scholar 

  21. L.E.C. Rocha, F. Liljeros, P. Holme, PLoS One 7, e1001109 (2011)

    Google Scholar 

  22. M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, A.L. Barabási, J. Saramäki, Phys. Rev. E 83, 025102 (2011)

    Article  ADS  Google Scholar 

  23. C. Castellano, R. Pastor-Satorras, Sci. Rep. 2, 371 (2012)

    Article  ADS  Google Scholar 

  24. I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C.J. Tessone, F. Schweitzer, Nat. Commun. 5, 6024 (2014)

    Article  Google Scholar 

  25. M. Rosvall, A.V. Esquivel, A. Lancichinetti, J.D. West, R. Lambiotte, Nat. Commun. 5, 4630 (2014)

    Article  ADS  Google Scholar 

  26. J.P. Gleeson, K.P. O’Sullivan, R.A. Baños, Y. Moreno, Phys. Rev. X 6, 021019 (2016)

    Google Scholar 

  27. A. Rizzo, M. Frasca, M. Porfiri, Phys. Rev. E 90, 042801 (2014)

    Article  ADS  Google Scholar 

  28. S. Liu, N. Perra, M. Karsai, A. Vespignani, Phys. Rev. Lett. 112, 118702 (2014)

    Article  ADS  Google Scholar 

  29. M. Tizzani, S. Lenti, E. Ubaldi, A. Vezzani, C. Castellano, R. Burioni, Phys. Rev. E 98, 062315 (2018)

    Article  ADS  Google Scholar 

  30. M. Nadini, K. Sun, E. Ubaldi, M. Starnini, A. Rizzo, N. Perra, Sci. Rep. 8, 2352 (2018)

    Article  ADS  Google Scholar 

  31. E. Valdano, M.R. Fiorentin, C. Poletto, V. Colizza, Phys. Rev. Lett. 120, 068302 (2018)

    Article  ADS  Google Scholar 

  32. A. Moinet, R. Pastor-Satorras, A. Barrat, Phys. Rev. E 97, 012313 (2018)

    Article  ADS  Google Scholar 

  33. O.E. Williams, F. Lillo, V. Latora, New J. Phys. 21, 043028 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  34. G. Petri, A. Barrat, Phys. Rev. Lett. 121, 228301 (2018)

    Article  ADS  Google Scholar 

  35. C. Li, J. Li, X. Li, https://doi.org/arXiv:1905.08525 (2019)

  36. R. Cohen, D. ben Avraham, S. Havlin, Phys. Rev. E 66, 036113 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meesoon Ha or Hawoong Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Ha, M. & Jeong, H. Impact of temporal connectivity patterns on epidemic process. Eur. Phys. J. B 92, 161 (2019). https://doi.org/10.1140/epjb/e2019-100159-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100159-1

Keywords

Navigation