Skip to main content
Log in

How the reversible change of contact networks affects the epidemic spreading

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

During the early outbreak of the COVID-19 pandemic, the mobility patterns of individuals in many regions in China exhibit notable changes: initially, there was a significant reduction in mobility, followed by a gradual recovery. Based on this observation, here we study epidemic models on a particular type of time-varying network where the links undergo a freeze-recovery process. We first focus on an isolated network and find that the recovery mechanism could lead to the resurgence of an epidemic, while the influence of link freezing on epidemic dynamics is intricate. In particular, we show that the final epidemic size is a non-monotonous function of the freezing rate. This result challenges our conventional idea that stricter prevention measures (corresponding to a larger freezing rate) could always have a better inhibitory effect on epidemic spreading. We further investigate an open system where a fraction of nodes in the network may contract the disease from the “environment” (the outside infected sources). In this case, a second wave can emerge even if the number of infected nodes has declined to zero, which cannot be explained by the isolated network model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be available on reasonable request.

Notes

  1. https://ncov.dxy.cn/.

References

  1. Maier, B.F., Brockmann, D.: Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China. Science 368(6492), 742–746 (2020)

    MathSciNet  Google Scholar 

  2. Zhang, J., Litvinova, M., Liang, Y., et al.: Changes in contact patterns shape the dynamics of the COVID-19 outbreak in China. Science 368(6498), 1481–1486 (2020)

    Google Scholar 

  3. Zhang, J., Dong, L., Zhang, Y., et al.: Investigating time, strength, and duration of measures in controlling the spread of COVID-19 using a networked meta-population model. Nonlinear Dyn. 101(3), 1789–1800 (2020)

    MathSciNet  Google Scholar 

  4. Kraemer, M.U.G., Yang, C.H., Gutierrez, B., et al.: The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 368, 493–497 (2020)

    Google Scholar 

  5. Zhou, Y., Xu, R., Hu, D., et al.: Effects of human mobility restrictions on the spread of COVID-19 in Shenzhen, China: a modelling study using mobile phone data. Lancet Digital Health 2(8), e417–e424 (2020)

    Google Scholar 

  6. Schlosser, F., Maier, B.F., Jack, O., et al.: COVID-19 lockdown induces disease-mitigating structural changes in mobility networks. Proc. Natl. Acad. Sci. USA 117(52), 32883–32890 (2020)

    Google Scholar 

  7. Gibbs, H., Liu, Y., Pearson, C.A.B., et al.: Changing travel patterns in China during the early stages of the COVID-19 pandemic. Nat. Commun. 11(1), 1–9 (2020)

    Google Scholar 

  8. Badr, H.S., Du, H., Marshall, M., et al.: Association between mobility patterns and COVID-19 transmission in the USA: a mathematical modelling study. Lancet Infect. Dis. 20(11), 1247–1254 (2020)

    Google Scholar 

  9. Yang, L., Wei, C., Jiang, X., Ye, Q., Tatano, H.: Estimating the economic effects of the early Covid-19 emergency response in cities using intracity travel intensity data. Int. J. Disaster Risk Sci. 13(1), 125–138 (2022)

    Google Scholar 

  10. Zanette, D.H., Risau-Gusmán, S.: Infection spreading in a population with evolving contacts. J. Biol. Phys. 34(1), 135–148 (2008)

    Google Scholar 

  11. Meloni, S., Arenas, A., Moreno, Y.: Traffic-driven epidemic spreading in finite-size scale-free networks. Proc. Natl. Acad. Sci. USA 106(40), 16897–16902 (2009)

    Google Scholar 

  12. Ruan, Z., Tang, M., Liu, Z.: Epidemic spreading with information-driven vaccination. Phys. Rev. E 86(2), 036117 (2012)

    Google Scholar 

  13. Yang, H., Gu, C., Tang, M., et al.: Suppression of epidemic spreading in time-varying multiplex networks. App. Math. Model. 75, 806–818 (2019)

    MathSciNet  Google Scholar 

  14. Gross, T., D’Lima, C.J.D., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96(20), 208701 (2006)

    Google Scholar 

  15. Marceau, V., Noël, P.A., Hébert-Dufresne, L., Allard, A., Dubé, L.J.: Adaptive networks: coevolution of disease and topology. Phys. Rev. E 82(3), 036116 (2010)

    MathSciNet  Google Scholar 

  16. Yang, H., Tang, M., Zhang, H.: Efficient community-based control strategies in adaptive networks. New J. Phys. 14(12), 123017 (2012)

    Google Scholar 

  17. Karsai, M., Kivelä, M., Pan, R.K., et al.: Small but slow world: How network topology and burstiness slow down spreading. Phys. Rev. E 83(2), 025102 (2011)

    Google Scholar 

  18. Perra, N., Gonçalves, B., Pastor-Satorras, R., Vespignani, A.: Activity driven modeling of time varying networks. Sci. Rep. 2, 469 (2012)

    Google Scholar 

  19. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Google Scholar 

  20. Pozzana, I., Sun, K., Perra, N.: Epidemic spreading on activity-driven networks with attractiveness. Phys. Rev. E 96(4), 042310 (2017)

    Google Scholar 

  21. Zino, L., Rizzo, A., Porfiri, M.: Continuous-time discrete-distribution theory for activity-driven networks. Phys. Rev. Lett. 117(22), 228302 (2016)

    Google Scholar 

  22. Vazquez, A., Rácz, B., Lukács, A., Barabási, A.L.: Impact of non-noissonian activity patterns on spreading processes. Phys. Rev. Lett. 98(15), 158702 (2007)

    Google Scholar 

  23. Acemoglu, D., Chernozhukov, V., Werning, I., Whinston, M.D.: Optimal targeted lockdowns in a multigroup SIR model. Am. Econ. Rev. Insights 3(4), 487–502 (2021)

    Google Scholar 

  24. Farboodi, M., Jarosch, G., Shimer, R.: Internal and external effects of social distancing in a pandemic. J. Econ. Theory 196, 105293 (2021)

    MathSciNet  Google Scholar 

  25. Ventura, P.C., Aleta, A., Rodrigues, F.A., Moreno, Y.: Modeling the effects of social distancing on the large-scale spreading of diseases. Epidemics 38, 100544 (2022)

    Google Scholar 

  26. Kurmi, S., Chouhan, U.: A multicompartment mathematical model to study the dynamic behaviour of COVID-19 using vaccination as control parameter. Nonlinear Dyn. 109(3), 2185–2201 (2022)

    Google Scholar 

  27. Meng, X., Lin, J., Fan, Y., et al.: Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic. Chaos Solitons Fract. 169, 113294 (2023)

    MathSciNet  Google Scholar 

  28. Pastor-Satorras, R., Castellano, C., Mieghem, P.V., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)

    MathSciNet  Google Scholar 

  29. Ruan, Z.: Epidemic spreading in complex networks. Sci. Sin-Phys. Mech. Astron. 50(1), 010507 (2020)

    Google Scholar 

  30. Aleta, A., Martín-Corral, D., Pastore y Piontti, A., et al.: Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. Nat. Hum. Behav. 4(9), 964–971 (2020)

  31. Belik, V., Geisel, T., Brockmann, D.: Natural human mobility patterns and spatial spread of infectious diseases. Phys. Rev. X 1(1), 011001 (2011)

    Google Scholar 

  32. Ruan, Z., Wang, C., Hui, P.M., Liu, Z.: Integrated travel network model for studying epidemics: Interplay between journeys and epidemic. Sci. Rep. 5, 11401 (2015)

    Google Scholar 

  33. Wang, L., Wang, Z., Zhang, Y., Li, X.: How human location-specific contact patterns impact spatial transmission between populations? Sci. Rep. 3, 1468 (2013)

    Google Scholar 

  34. Ruan, Z., Tang, M., Gu, C., Xu, J.: Epidemic spreading between two coupled subpopulations with inner structures. Chaos 27(10), 103104 (2017)

    MathSciNet  Google Scholar 

  35. Poletto, C., Tizzoni, M., Colizza, V.: Heterogeneous length of stay of hosts’ movements and spatial epidemic spread. Sci. Rep. 2, 476 (2012)

    Google Scholar 

  36. Zheng, M., Wang, C., Zhou, J., et al.: Non-periodic outbreaks of recurrent epidemics and its network modelling. Sci. Rep. 5, 16010 (2015)

    Google Scholar 

  37. Meidan, D., Schulmann, N., Cohen, R., et al.: Alternating quarantine for sustainable epidemic mitigation. Nat. Commun. 12(1), 220 (2021)

    Google Scholar 

  38. Zhang, X., Ruan, Z., Zheng, M., et al.: Epidemic spreading under mutually independent intra-and inter-host pathogen evolution. Nat. Commun. 13(1), 6218 (2022)

    Google Scholar 

  39. Perra, N., Balcan, D., Gonçalves, B., Vespignani, A.: Towards a characterization of behavior-disease models. PLoS ONE 6(8), e23084 (2011)

    Google Scholar 

  40. Zheng, M., Wang, W., Tang, M., et al.: Multiple peaks patterns of epidemic spreading in multi-layer networks. Chaos Solitons Fract. 107, 135–142 (2018)

    MathSciNet  Google Scholar 

  41. Weitz, J.S., Park, S.W., Eksin, C., Dushoff, J.: Awareness-driven behavior changes can shift the shape of epidemics away from peaks and toward plateaus, shoulders, and oscillations. Proc. Natl. Acad. Sci. USA 117(51), 32764–32771 (2020)

    Google Scholar 

  42. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200 (2001)

    Google Scholar 

  43. Moreno, Y., Gomez, J.B., Pacheco, A.F.: Epidemic incidence in correlated complex networks. Phys. Rev. E 68, 035103 (2003)

    Google Scholar 

  44. Liu, Z., Hu, B.: Epidemic spreading in community networks. Europhys. Lett. 72, 315 (2005)

    Google Scholar 

  45. Colizza, V., Pastor-Satorras, R., Vespignani, A.: Reaction-diffusion processes and metapopulation models in heterogeneous networks. Nat. Phys. 3, 276 (2007)

    Google Scholar 

  46. Wang, L., Li, X.: Spatial epidemiology of networked metapopulation: an overview. Chin. Sci. Bull. 59, 35113522 (2014)

    Google Scholar 

  47. Xuan, Q., Du, F., Yu, L., Chen, G.: Reaction-diffusion processes and metapopulation models on duplex networks. Phys. Rev. E 87, 032809 (2013)

    Google Scholar 

  48. Ruan, Z., Hui, P., Lin, H., Liu, Z.: Risks of an epidemic in a two layered railway-local area traveling network. Eur. Phys. J. B 86, 13 (2013)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Zhejiang Provincial Natural Science Foundation of China under Grants Nos. LY21F030017 and LR19F030001, by the National Natural Science Foundation of China under Grant No. 61973273, and by the Key R &D Programs of Zhejiang under Grant No. 2022C01018.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyuan Ruan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, X., Ruan, Z. How the reversible change of contact networks affects the epidemic spreading. Nonlinear Dyn 112, 731–739 (2024). https://doi.org/10.1007/s11071-023-09078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-09078-2

Keywords

Navigation