Skip to main content
Log in

Theoretical study of stress and strain distribution in coupled pyramidal InAs quantum dots embedded in GaAs by finite element method

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Stress and strain distributions in and around a single or two-coupled pyramidal InAs quantum dots (QDs) embedded in GaAs are calculated by finite element methods according to the continuum elasticity theory. By changing the quantum dot spacing and thickness of cap layer, the results about strain and stress distributions show compressive strain and stress distribution in the QDs and relaxation undergoes two stages with different speeds for different quantum dot height, quantum width and thickness of cap layer. The stress and strain distributions of pyramidal QDs would not vary monotonously with geometric dimensions. The height of quantum dot and cap layer thickness can effectively adjust the vertical correlation of self-assembly QDs according to the calculation. The shape of stress distribution at surface of cap layer can be tuned from a quadrangle into a circle by increasing the thickness of cap layer or decreasing the height of quantum dot. Also, a new approach to grow quantum ring is found in this paper. The calculations of two-coupled QDs show that the self-assembly technology might fail if the horizontal distance between two QDs is not large enough. The stress induced by upper QDs will be relaxed to zero with a longer distance downwards is found in this paper.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Gougousi, Prog. Cryst. Growth Charact. Mater. 62, 1 (2016)

    Article  Google Scholar 

  2. A. Assali, M. Bouslama, H. Abid, S. Zerroug, M. Ghaffour, F. Saidi, L. Bouzaiene, K. Boulenouar, Mater. Sci. Semicond. Process. 36, 192 (2015)

    Article  Google Scholar 

  3. K. Sudhir, K.M. Tarun, S. Auluck, Jpn. J. Appl. Phys. 47, 5417 (2008)

    Article  ADS  Google Scholar 

  4. I. Fraj, F. Saidi, Z. Zaaboub, L. Bouzaîene, L. Sfaxi, H. Maaref, Superlattices Microstruct. 82, 406 (2015)

    Article  ADS  Google Scholar 

  5. P. Navaeipour, A. Asgari, Optik 126, 119 (2015)

    Article  ADS  Google Scholar 

  6. P. Bhattacharya, Z. Mi, A.Z.M.S. Rahman, Reference Module in Materials Science and Materials Engineering (Elsevier, 2016)

  7. S.S. Rusu, T. Oloinic, V.Z. Tronciu, Opt. Commun. 381, 140 (2016)

    Article  ADS  Google Scholar 

  8. D.B. Hayrapetyan, E.M. Kazaryan, H.A. Sarkisyan, Opt. Commun. 371, 138 (2016)

    Article  ADS  Google Scholar 

  9. M. Zhang, M. Wang, Z. Yang, J. Li, H. Qiu, J. Alloys Compd. 748, 537 (2018)

    Article  Google Scholar 

  10. B. Cui, X.-t. Feng, F. Zhang, Y.-l. Wang, X.-g. Liu, Y.-z. Yang, H.-s. Jia, New Carbon Mater. 32, 385 (2017)

    Article  Google Scholar 

  11. E.C. Weiner, R. Jakomin, D.N. Micha, H. Xie, P.Y. Su, L.D. Pinto, M.P. Pires, F.A. Ponce, P.L. Souza, Sol. Energy Mater. Sol. Cells 178, 240 (2018)

    Article  Google Scholar 

  12. K. Surana, R.M. Mehra, B. Bhattacharya, Mater. Today 5, 9108 (2018)

    Google Scholar 

  13. S. Yoon, S.H. Lee, J.C. Shin, J.S. Kim, S.J. Lee, J.-Y. Leem, S. Krishna, Curr. Appl. Phys. 18, 667 (2018)

    Article  ADS  Google Scholar 

  14. H. Ghadi, J. Patwari, P. Murkute, D. Das, P.K. Singh, S. Dubey, M. Bhatt, A. Chatterjee, A. Balgarkashi, S.K. Pal, S. Chakrabarti, J. Alloys Compd. 751, 337 (2018)

    Article  Google Scholar 

  15. D.Z.Y. Ting, A. Soibel, A. Khoshakhlagh, S.A. Keo, J. Nguyen, L. Höglund, J.M. Mumolo, J.K. Liu, S.B. Rafol, C.J. Hill, S.D. Gunapala, Infrared Phys. Technol. 59, 146 (2013)

    Article  ADS  Google Scholar 

  16. D.A. Cardimona, C.P. Morath, D.H. Guidry, V.M. Cowan, Infrared Phys. Technol. 59, 93 (2013)

    Article  ADS  Google Scholar 

  17. G.R. Liu, S.S.Q. Jerry, Semicond. Sci. Technol. 17, 630 (2002)

    Article  ADS  Google Scholar 

  18. S. Coppola, V. Vespini, F. Olivieri, G. Nasti, M. Todino, B. Mandracchia, V. Pagliarulo, P. Ferraro, Appl. Surf. Sci. 399, 160 (2017)

    Article  ADS  Google Scholar 

  19. T. Benabbas, Y. Androussi, A. Lefebvre, J. Appl. Phys. 86, 1945 (1999)

    Article  ADS  Google Scholar 

  20. M. Grundmann, O. Stier, D. Bimberg, Phys. Rev. B 52, 11969 (1995)

    Article  ADS  Google Scholar 

  21. W.M. Zhou, H. Wang, Y. Jiang, Eur. Phys. J. B 85, 37 (2012)

    Article  ADS  Google Scholar 

  22. M. Sabaeian, M. Shahzadeh, Physica E 61, 62 (2014)

    Article  ADS  Google Scholar 

  23. M. Bennour, L. Bouzaiene, F. Saidi, L. Sfaxi, H. Maaref, J. Alloys Compd. 647, 110 (2015)

    Article  Google Scholar 

  24. R. Parvizi, Physica B 456, 87 (2015)

    Article  ADS  Google Scholar 

  25. S. Shetty, S. Adhikary, B. Tongbram, A. Ahmad, H. Ghadi, S. Chakrabarti, J. Lumin. 158, 231 (2015)

    Article  Google Scholar 

  26. R. Thirayatorn, P. Moontragoon, V. Amornkitbamrung, S. Meansiri, Z. Ikonic, Comput. Phys. Commun. 191, 106 (2015)

    Article  ADS  Google Scholar 

  27. J.R. Downes, D.A. Faux, E.P. O’Reilly, J. Appl. Phys. 81, 6700 (1997)

    Article  ADS  Google Scholar 

  28. C. Shu, Y. Liu, Acta Phys. Pol. A 129, 371 (2016)

    Article  Google Scholar 

  29. S.h. Guo Ruhai, S. Xiudong, Acta Phys. Sin. 53, 3487 (2004)

    Google Scholar 

  30. D. Granados, J.M. García, Appl. Phys. Lett. 82, 2401 (2003)

    Article  ADS  Google Scholar 

  31. T. Mano, N. Koguchi, J. Cryst. Growth 278, 108 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Luo, Z., Zhou, X. et al. Theoretical study of stress and strain distribution in coupled pyramidal InAs quantum dots embedded in GaAs by finite element method. Eur. Phys. J. B 92, 138 (2019). https://doi.org/10.1140/epjb/e2019-100090-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100090-5

Keywords

Navigation