Skip to main content

Numerical construction of the density-potential mapping

Abstract

We demonstrate how a recently developed method Nielsen et al. [Nielsen et al., EPL 101, 33001 (2013)] allows for a comprehensive investigation of time-dependent density functionals in general, and of the exact time-dependent exchange-correlation potential in particular, by presenting the first exact results for two- and three-dimensional multi-electron systems. This method is an explicit realization of the Runge–Gross correspondence, which maps time-dependent densities to their respective potentials, and allows for the exact construction of desired density functionals. We present in detail the numerical requirements that makes this method efficient, stable and precise even for large and rapid density changes, irrespective of the initial state and two-body interaction. This includes among others the proper treatment of low density regions, a subtle interplay between numerical time-propagation and zero boundary conditions, the choice of time-stepping strategy, and an error damping mechanism based on both the density and current density residuals. These considerations are also relevant for computing time-independent density-functionals and lead to a more precise implementation of quantum mechanics in general, which is mainly relevant for cases in which there is notable contact with a boundary or when the low density regions matter.

References

  1. U. von Barth, Phys. Scr. T109, 9 (2004)

    ADS  Google Scholar 

  2. C.A. Ullrich,Time-Dependent Density-Functional Theory: Concepts and Applications (Oxford University Press, Oxford, 2012)

  3. M.A.L. Marques, C.A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E.K.U. Gross,Time-Dependent Density Functional Theory (Springer, Heidelberg, 2012)

  4. N.T. Maitra, K. Burke, Phys. Rev. A 63, 042501 (2001)

    ADS  Google Scholar 

  5. N.T. Maitra, K. Burke, C. Woodward, Phys. Rev. Lett. 89, 023002 (2002)

    ADS  Google Scholar 

  6. M. Ruggenthaler, S.E.B. Nielsen, R. van Leeuwen, Phys. Rev. A 88, 022512 (2013)

    ADS  Google Scholar 

  7. P. Elliott, J.I. Fuks, A. Rubio, N.T. Maitra, Phys. Rev. Lett. 109, 266404 (2012)

    ADS  Google Scholar 

  8. M.J.P. Hodgson, J.D. Ramsden, J.B.J. Chapman, P. Lillystone, R.W. Godby, Phys. Rev. B 88, 241102 (2013)

    ADS  Google Scholar 

  9. M.J.P. Hodgson, J.D. Ramsden, R.W. Godby, Phys. Rev. B 93, 155146 (2016)

    ADS  Google Scholar 

  10. S.E.B. Nielsen, M. Ruggenthaler, R. van Leeuwen, Europhys. Lett. 101, 33001 (2013)

    ADS  Google Scholar 

  11. C. Verdozzi, Phys. Rev. Lett. 101, 166401 (2008)

    ADS  Google Scholar 

  12. J.D. Ramsden, R.W. Godby, Phys. Rev. Lett. 109, 036402 (2012)

    ADS  Google Scholar 

  13. P. Schmitteckert, M. Dzierzawa, P. Schwab, Phys. Chem. Chem. Phys. 15, 5477 (2013)

    Google Scholar 

  14. J.D. Whitfield, https://doi.org/arXiv:1503.00248v1 (2015)

  15. D.S. Jensen, A. Wasserman, Phys. Chem. Chem. Phys. 18, 21079 (2016)

    Google Scholar 

  16. P. Gross, H. Singh, H. Rabitz, K. Mease, G.M. Huang, Phys. Rev. A 47, 4593 (1993)

    ADS  Google Scholar 

  17. W. Zhu, H. Rabitz, J. Chem. Phys. 119, 3619 (2003)

    ADS  Google Scholar 

  18. M. Ruggenthaler, R. van Leeuwen, Europhys. Lett. 95, 13001 (2011)

    ADS  Google Scholar 

  19. M. Ruggenthaler, K.J.H. Giesbertz, M. Penz, R. van Leeuwen, Phys. Rev. A 85, 052504 (2012)

    ADS  Google Scholar 

  20. M. Ruggenthaler, M. Penz, R. van Leeuwen, J. Phys.: Condens. Matter 27, 203202 (2015)

    ADS  Google Scholar 

  21. V. Peuckert, J. Phys. C: Solid State Phys. 11, 4945 (1978)

    ADS  Google Scholar 

  22. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    ADS  Google Scholar 

  23. S. Fournais, J. Lampart, M. Lewin, T.Ø. Sørensen, Phys. Rev. A 93, 062510 (2016)

    ADS  Google Scholar 

  24. C. Leforestier et al., J. Comput. Phys. 94, 59 (1991)

    ADS  MathSciNet  Google Scholar 

  25. R. van Leeuwen, E.J. Baerends, Phys. Rev. A 49, 2421 (1994)

    ADS  Google Scholar 

  26. D.S. Jensen, A. Wasserman, Int. J. Quantum Chem. 118, e25425 (2017)

    Google Scholar 

  27. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    ADS  Google Scholar 

  28. M. Penz, https://doi.org/arXiv:1610.05552v1 (2016)

  29. A. Castro, M.A.L. Marques, A. Rubio, J. Chem. Phys. 121, 3425 (2004)

    ADS  Google Scholar 

  30. J. Flick, M. Ruggenthaler, H. Appel, A. Rubio, Proc. Natl. Acad. Sci. U.S.A. 112, 15285 (2015)

    ADS  Google Scholar 

  31. M. Ruggenthaler, M. Penz, D. Bauer, Phys. Rev. A 81, 062108 (2010)

    ADS  Google Scholar 

  32. M. Penz, M. Ruggenthaler, J. Chem. Phys. 142, 124113 (2015)

    ADS  Google Scholar 

  33. M. Penz, https://doi.org/arXiv:1801.03361 (2018)

  34. J.I. Fuks, L. Lacombe, S.E.B. Nielsen, N.T. Maitra, https://doi.org/arXiv:1806.10267 (2018)

  35. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 2007)

  36. I. D’Amico, G. Vignale, Phys. Rev. B 59, 7876 (1999)

    ADS  Google Scholar 

  37. J.I. Fuks, S.E.B. Nielsen, M. Ruggenthaler, N.T. Maitra, Phys. Chem. Chem. Phys. 18, 20976 (2016)

    Google Scholar 

  38. Y. Suzuki, L. Lacombe, K. Watanabe, N.T. Maitra, Phys. Rev. Lett. 119, 263401 (2017)

    ADS  Google Scholar 

  39. L. Lacombe, Y. Suzuki, K. Watanabe, N.T. Maitra, Eur. Phys. J. B 91, 96 (2018)

    ADS  Google Scholar 

  40. M. Seidl, Phys. Rev. A 60, 4387 (1999)

    ADS  Google Scholar 

  41. M. Seidl, P. Gori-Giorgi, A. Savin, Phys. Rev. A 75, 042511 (2007)

    ADS  Google Scholar 

  42. F. Malet, A. Mirtschink, K.J.H. Giesbertz, L.O. Wagner, P. Gori-Giorgi, Phys. Chem. Chem. Phys. 16, 14551 (2014)

    Google Scholar 

  43. W. Zhu, J. Botina, H. Rabitz, J. Chem. Phys. 108, 1953 (1998)

    ADS  Google Scholar 

  44. I. Serban, J. Werschnik, E.K.U. Gross, Phys. Rev. A 71, 053810 (2005)

    ADS  Google Scholar 

  45. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, T.Ø. Sørensen, Ark. Mat. 42, 87 (2004)

    MathSciNet  Google Scholar 

  46. A. Pieper, M. Kreutzer, A. Alvermann, M. Galgon, H. Fehske, G. Hager, B. Lang, G. Wellein, J. Comput. Phys. 325, 226 (2016)

    ADS  MathSciNet  Google Scholar 

  47. Y. Zhou, Y. Saad, SIAM J. Matrix Anal. Appl. 29, 954 (2007)

    MathSciNet  Google Scholar 

  48. P.R.T. Schipper, O.V. Gritsenko, E.J. Baerends, Theor. Chem. Acc. 98, 16 (1997)

    Google Scholar 

  49. I.G. Ryabinkin, S.V. Kohut, V.N. Staroverov, Phys. Rev. Lett. 115, 083001 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soeren E. B. Nielsen.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nielsen, S.E.B., Ruggenthaler, M. & van Leeuwen, R. Numerical construction of the density-potential mapping. Eur. Phys. J. B 91, 235 (2018). https://doi.org/10.1140/epjb/e2018-90276-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90276-4