Skip to main content
Log in

Electron dynamics in extended systems within real-time time-dependent density-functional theory

  • Computational Approaches for Materials Discovery and Development Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Due to a beneficial balance of computational cost and accuracy, real-time time-dependent density-functional theory has emerged as a promising first-principles framework to describe electron real-time dynamics. Here we discuss recent implementations around this approach, in particular in the context of complex, extended systems. Results include an analysis of the computational cost associated with numerical propagation and when using absorbing boundary conditions. We extensively explore the shortcomings for describing electron–electron scattering in real time and compare to many-body perturbation theory. Modern improvements of the description of exchange and correlation are reviewed. In this work, we specifically focus on the Qb@ll code, which we have mainly used for these types of simulations over the last years, and we conclude by pointing to further progress needed going forward.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, A.S., upon reasonable request.

References

  1. J. Lloyd-Hughes, P.M. Oppeneer, T.P. Dos Santos, A. Schleife, S. Meng, M.A. Sentef, M. Ruggenthaler, A. Rubio, I. Radu, M. Murnane, X. Shi, H. Kapteyn, B. Stadtmüller, K.M. Dani, F. da Jornada, E. Prinz, M. Aeschlimann, R. Milot, M. Burdanova, J. Boland, T.L. Cocker, F.A. Hegmann, J. Phys. Condens. Matter 33, 353001 (2021). https://doi.org/10.1088/1361-648X/abfe21

    Article  CAS  Google Scholar 

  2. Y. Miyamoto, Sci. Rep. 11, 14626 (2021). https://doi.org/10.1038/s41598-021-94036-4

    Article  CAS  Google Scholar 

  3. A.A. Correa, Comput. Mater. Sci. 150, 291 (2018). https://doi.org/10.1016/j.commatsci.2018.03.064

    Article  CAS  Google Scholar 

  4. M. Uemoto, Y. Kuwabara, S.A. Sato, K. Yabana, J. Chem. Phys. 150, 094101 (2019). https://doi.org/10.1063/1.5068711

    Article  CAS  Google Scholar 

  5. K. Jiang, M. Pavanello, Phys. Rev. B 103, 245102 (2021). https://doi.org/10.1103/PhysRevB.103.245102

    Article  CAS  Google Scholar 

  6. C. Covington, J. Malave, K. Varga, Phys. Rev. B 103, 075119 (2021). https://doi.org/10.1103/PhysRevB.103.075119

    Article  CAS  Google Scholar 

  7. G. Giannone, S. Śmiga, S. D’Agostino, E. Fabiano, F. Della Sala, J. Phys. Chem. A 125, 7246 (2021). https://doi.org/10.1021/acs.jpca.1c05384

    Article  CAS  Google Scholar 

  8. F.P. Bonafé, B. Aradi, B. Hourahine, C.R. Medrano, F.J. Hernández, T. Frauenheim, J. Chem. Theor. Comput. 16, 4454 (2020). https://doi.org/10.1021/acs.jctc.9b01217

    Article  CAS  Google Scholar 

  9. A. Schleife, E.W. Draeger, Y. Kanai, A.A. Correa, J. Chem. Phys. 137, 22A546 (2012). https://doi.org/10.1063/1.4758792

    Article  CAS  Google Scholar 

  10. A. Schleife, E.W. Draeger, V.M. Anisimov, A.A. Correa, Y. Kanai, Comput. Sci. Eng. 16, 54 (2014). https://doi.org/10.1109/MCSE.2014.55

    Article  Google Scholar 

  11. E.W. Draeger, X. Andrade, J.A. Gunnels, A. Bhatele, A. Schleife, A.A. Correa, J. Parallel Distrib. Comput. 106, 205 (2017). https://doi.org/10.1016/j.jpdc.2017.02.005

    Article  Google Scholar 

  12. F. Gygi, IBM J. Res. Dev. 52, 137 (2008). https://doi.org/10.1147/rd.521.0137

    Article  Google Scholar 

  13. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984). https://doi.org/10.1103/PhysRevLett.52.997

    Article  CAS  Google Scholar 

  14. C.A. Ullrich, Time-dependent density-functional theory: concepts and applications (Oxford University Press, Oxford, 2012). https://doi.org/10.1093/acprof:oso/9780199563029.001.0001

    Book  Google Scholar 

  15. X. Andrade, A. Castro, D. Zueco, J. Alonso, P. Echenique, F. Falceto, A. Rubio, J. Chem. Theor. Comput. 5, 728 (2009). https://doi.org/10.1021/ct800518j

    Article  CAS  Google Scholar 

  16. G.F. Bertsch, J.-I. Iwata, A. Rubio, K. Yabana, Phys. Rev. B 62, 7998 (2000)

    Article  CAS  Google Scholar 

  17. K. Yabana, T. Nakatsukasa, J.-I. Iwata, G.F. Bertsch, Phys. Status Solidi (b) 243, 1121 (2006). https://doi.org/10.1002/pssb.200642005

    Article  CAS  Google Scholar 

  18. X. Andrade, S. Hamel, A.A. Correa, Eur. Phys. J. B 91, 229 (2018). https://doi.org/10.1140/epjb/e2018-90291-5

    Article  CAS  Google Scholar 

  19. J. Sun, C.-W. Lee, A. Kononov, A. Schleife, C.A. Ullrich, Phys. Rev. Lett. 127, 077401 (2021). https://doi.org/10.1103/PhysRevLett.127.077401

    Article  CAS  Google Scholar 

  20. A. Tsolakidis, D. Sánchez-Portal, R.M. Martin, Phys. Rev. B 66, 235416 (2002). https://doi.org/10.1103/PhysRevB.66.235416

    Article  CAS  Google Scholar 

  21. D.C. Yost, Y. Yao, Y. Kanai, J. Chem. Phys. 150, 194113 (2019). https://doi.org/10.1063/1.5095631

    Article  CAS  Google Scholar 

  22. E. Luppi, H.-C. Weissker, S. Bottaro, F. Sottile, V. Veniard, L. Reining, G. Onida, Phys. Rev. B 78, 245124 (2008)

    Article  Google Scholar 

  23. K. Kang, A. Kononov, C.-W. Lee, J.A. Leveillee, E.P. Shapera, X. Zhang, A. Schleife, Comput. Mater. Sci. 160, 207 (2019). https://doi.org/10.1016/j.commatsci.2019.01.004

    Article  CAS  Google Scholar 

  24. A. Castro, M.A.L. Marques, A. Rubio, J. Chem. Phys. 121, 3425 (2004). https://doi.org/10.1063/1.1774980

    Article  CAS  Google Scholar 

  25. A. Kononov, A. Schleife, Phys. Rev. B 102, 165401 (2020). https://doi.org/10.1103/PhysRevB.102.165401

    Article  CAS  Google Scholar 

  26. S. Balay, S. Abhyankar, M.F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, W.D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M.G. Knepley, F. Kong, S. Kruger, D.A. May, L.C. McInnes, R.T. Mills, L. Mitchell, T. Munson, J.E. Roman, K. Rupp, P. Sanan, J. Sarich, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, and J. Zhang, PETSc/TAO users manual (Argonne National Laboratory, 2020)

  27. J. Butcher, Appl. Numer. Math. 20, 247 (1996). https://doi.org/10.1016/0168-9274(95)00108-5

    Article  Google Scholar 

  28. S. Gottlieb, D.I. Ketcheson, C.-W. Shu, Strong stability preserving Runge-Kutta and multistep time discretizations (World Scientific, Singapore, 2011)

    Book  Google Scholar 

  29. A. Kononov, Energy and charge dynamics in ion-irradiated surfaces and 2D materials from first principles, Ph.D. thesis, School University of Illinois at Urbana-Champaign (2020)

  30. A. Schleife, Y. Kanai, A.A. Correa, Phys. Rev. B 91, 014306 (2015). https://doi.org/10.1103/PhysRevB.91.014306

    Article  CAS  Google Scholar 

  31. R.J. Magyar, L. Shulenburger, A.D. Baczewski, Contrib. Plasm. Phys. 56, 459 (2016). https://doi.org/10.1002/ctpp.201500143

    Article  CAS  Google Scholar 

  32. A. Lim, W.M.C. Foulkes, A.P. Horsfield, D.R. Mason, A. Schleife, E.W. Draeger, A.A. Correa, Phys. Rev. Lett. 116, 043201 (2016). https://doi.org/10.1103/PhysRevLett.116.043201

    Article  CAS  Google Scholar 

  33. D.C. Yost, Y. Kanai, Phys. Rev. B 94, 115107 (2016). https://doi.org/10.1103/PhysRevB.94.115107

    Article  Google Scholar 

  34. D.C. Yost, Y. Yao, Y. Kanai, Phys. Rev. B 96, 115134 (2017). https://doi.org/10.1103/PhysRevB.96.115134

    Article  Google Scholar 

  35. C.-W. Lee, A. Schleife, Eur. Phys. J. B 91, 222 (2018). https://doi.org/10.1140/epjb/e2018-90204-8

    Article  CAS  Google Scholar 

  36. R. Ullah, E. Artacho, A.A. Correa, Phys. Rev. Lett. 121, 116401 (2018). https://doi.org/10.1103/PhysRevLett.121.116401

    Article  CAS  Google Scholar 

  37. C.-W. Lee, A. Schleife, Nano Lett. 19, 3939 (2019). https://doi.org/10.1021/acs.nanolett.9b01214

    Article  CAS  Google Scholar 

  38. C.-W. Lee, J.A. Stewart, R. Dingreville, S.M. Foiles, A. Schleife, Phys. Rev. B 102, 024107 (2020). https://doi.org/10.1103/PhysRevB.102.024107

    Article  CAS  Google Scholar 

  39. X. Qi, F. Bruneval, I. Maliyov, Phys. Rev. Lett. 128, 043401 (2022). https://doi.org/10.1103/PhysRevLett.128.043401

    Article  CAS  Google Scholar 

  40. H. Zhang, Y. Miyamoto, A. Rubio, Phys. Rev. Lett. 109, 265505 (2012). https://doi.org/10.1103/PhysRevLett.109.265505

    Article  CAS  Google Scholar 

  41. A. Ojanperä, A.V. Krasheninnikov, M. Puska, Phys. Rev. B 89, 035120 (2014). https://doi.org/10.1103/PhysRevB.89.035120

    Article  CAS  Google Scholar 

  42. S. Zhao, W. Kang, J. Xue, X. Zhang, P. Zhang, J. Phys. Condens. Matter 27, 025401 (2015). https://doi.org/10.1088/0953-8984/27/2/025401

    Article  CAS  Google Scholar 

  43. A. Kononov, A. Schleife, Nano Lett. 21, 4816 (2021). https://doi.org/10.1021/acs.nanolett.1c01416

    Article  CAS  Google Scholar 

  44. H. Vázquez, A. Kononov, A. Kyritsakis, N. Medvedev, A. Schleife, F. Djurabekova, Phys. Rev. B 103, 224306 (2021). https://doi.org/10.1103/PhysRevB.103.224306

    Article  Google Scholar 

  45. A. Kononov, A. Olmstead, A.D. Baczewski, A. Schleife, 2D Mater. 9, 4 (2022). https://doi.org/10.1088/2053-1583/ac8e7e

    Article  Google Scholar 

  46. P. Bogacki, L.F. Shampine, Comput. Math. Appl. 32, 15 (1996). https://doi.org/10.1016/0898-1221(96)00141-1

    Article  Google Scholar 

  47. D.A. Rehn, Y. Shen, M.E. Buchholz, M. Dubey, R. Namburu, E.J. Reed, J. Chem. Phys. 150, 014101 (2019). https://doi.org/10.1063/1.5056258

    Article  CAS  Google Scholar 

  48. X. Qian, J. Li, X. Lin, S. Yip, Phys. Rev. B 73, 035408 (2006). https://doi.org/10.1103/PhysRevB.73.035408

    Article  CAS  Google Scholar 

  49. S. Meng, E. Kaxiras, J. Chem. Phys. 129, 054110 (2008). https://doi.org/10.1063/1.2960628

    Article  CAS  Google Scholar 

  50. A. Ojanperä, V. Havu, L. Lehtovaara, M. Puska, J. Chem. Phys. 136, 144103 (2012). https://doi.org/10.1063/1.3700800

    Article  CAS  Google Scholar 

  51. Numerical implementation of time-dependent density functional theory for extended systems in extreme environments, SAND2014-0597 (Sandia National Laboratories)

  52. A.D. Baczewski, L. Shulenburger, M. Desjarlais, S. Hansen, R. Magyar, Phys. Rev. Lett. 116, 115004 (2016). https://doi.org/10.1103/PhysRevLett.116.115004

    Article  CAS  Google Scholar 

  53. M. Walter, H. Häkkinen, L. Lehtovaara, M. Puska, J. Enkovaara, C. Rostgaard, J.J. Mortensen, J. Chem. Phys. 128, 244101 (2008)

    Article  Google Scholar 

  54. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991). https://doi.org/10.1103/PhysRevB.43.1993

    Article  CAS  Google Scholar 

  55. S. Kang, E.M. Constantinescu, J. Sci Comput. 93, 23 (2022). https://doi.org/10.1007/s10915-022-01982-w

    Article  Google Scholar 

  56. D.I. Ketcheson, SIAM J. Numer. Anal. 57, 2850 (2019). https://doi.org/10.1137/19M1263662

    Article  Google Scholar 

  57. S. Liang, Z. Huang, H. Zhang, in International conference on learning representations (2022). https://openreview.net/forum?id=uVXEKeqJbNa

  58. W. Jia, D. An, L.-W. Wang, L. Lin, J. Chem. Theory Comput. 14, 5645 (2018). https://doi.org/10.1021/acs.jctc.8b00580

    Article  CAS  Google Scholar 

  59. D. An, D. Fang, L. Lin, J. Comput. Phys. 451, 110850 (2022). https://doi.org/10.1016/j.jcp.2021.110850

    Article  CAS  Google Scholar 

  60. P. Wopperer, U. De Giovannini, A. Rubio, Eur. Phys. J. B 90, 51 (2017). https://doi.org/10.1140/epjb/e2017-70548-3

    Article  CAS  Google Scholar 

  61. J. Muga, J. Palao, B. Navarro, I. Egusquiza, Phys. Rep. 395, 357 (2004). https://doi.org/10.1016/j.physrep.2004.03.002

    Article  CAS  Google Scholar 

  62. Y. Ueda, Y. Suzuki, K. Watanabe, Phys. Rev. B 97, 075406 (2018). https://doi.org/10.1103/PhysRevB.97.075406

    Article  CAS  Google Scholar 

  63. K. Tsubonoya, C. Hu, K. Watanabe, Phys. Rev. B 90, 035416 (2014). https://doi.org/10.1103/PhysRevB.90.035416

    Article  CAS  Google Scholar 

  64. F. Ladstädter, U. Hohenester, P. Puschnig, C. Ambrosch-Draxl, Phys. Rev. B 70, 235125 (2004). https://doi.org/10.1103/physrevb.70.235125

    Article  Google Scholar 

  65. V.P. Zhukov, E.V. Chulkov, P.M. Echenique, Phys. Rev. B 72, 155109 (2005). https://doi.org/10.1103/PhysRevB.72.155109

    Article  CAS  Google Scholar 

  66. N.A. Modine, R.M. Hatcher, J. Chem. Phys. 142, 204111 (2015). https://doi.org/10.1063/1.4921690

    Article  CAS  Google Scholar 

  67. N.D. Mermin, Phys. Rev. 137, A1441 (1965). https://doi.org/10.1103/PhysRev.137.A1441

    Article  Google Scholar 

  68. Socorro. http://dft.sandia.gov/socorro

  69. I. Campillo, J.M. Pitarke, A. Rubio, E. Zarate, P.M. Echenique, Phys. Rev. Lett. 83, 2230 (1999). https://doi.org/10.1103/PhysRevLett.83.2230

    Article  CAS  Google Scholar 

  70. M. Bauer, A. Marienfeld, M. Aeschlimann, Progress Surf. Sci. 90, 319 (2015). https://doi.org/10.1016/j.progsurf.2015.05.001

    Article  CAS  Google Scholar 

  71. A. Tamm, M. Caro, A. Caro, G. Samolyuk, M. Klintenberg, A.A. Correa, Phys. Rev. Lett. 120, 185501 (2018). https://doi.org/10.1103/PhysRevLett.120.185501

    Article  CAS  Google Scholar 

  72. P. Kratzer, M. Zahedifar, New J. Phys. 21, 123023 (2019). https://doi.org/10.1088/1367-2630/ab5c76

    Article  CAS  Google Scholar 

  73. L. Lacombe, Y. Suzuki, K. Watanabe, N.T. Maitra, Eur. Phys. J. B 91, 96 (2018). https://doi.org/10.1140/epjb/e2018-90101-2

    Article  CAS  Google Scholar 

  74. V. Rizzi, T.N. Todorov, J.J. Kohanoff, A.A. Correa, Phys. Rev. B 93, 024306 (2016). https://doi.org/10.1103/PhysRevB.93.024306

    Article  CAS  Google Scholar 

  75. G. Vignale, W. Kohn, Phys. Rev. Lett. 77, 2037 (1996). https://doi.org/10.1103/PhysRevLett.77.2037

    Article  CAS  Google Scholar 

  76. H.O. Wijewardane, C.A. Ullrich, Phys. Rev. Lett. 95, 086401 (2005). https://doi.org/10.1103/PhysRevLett.95.086401

    Article  CAS  Google Scholar 

  77. C. Shepard, R. Zhou, D.C. Yost, Y. Yao, Y. Kanai, J. Chem. Phys. 155, 100901 (2021). https://doi.org/10.1063/5.0057587

    Article  CAS  Google Scholar 

  78. Y. Yao, D.C. Yost, Y. Kanai, Phys. Rev. Lett. 123, 066401 (2019). https://doi.org/10.1103/PhysRevLett.123.066401

    Article  CAS  Google Scholar 

  79. J. Sun, A. Ruzsinszky, J.P. Perdew, Phys. Rev. Lett. 115, 036402 (2015). https://doi.org/10.1103/PhysRevLett.115.036402

    Article  CAS  Google Scholar 

  80. Y. Yao, Y. Kanai, J. Chem. Phys. 146, 224105 (2017). https://doi.org/10.1063/1.4984939

    Article  CAS  Google Scholar 

  81. C.D. Pemmaraju, F.D. Vila, J.J. Kas, S.A. Sato, J.J. Rehr, K. Yabana, Comput. Phys. Commun. 226, 30 (2018). https://doi.org/10.1016/j.cpc.2018.01.013

    Article  CAS  Google Scholar 

  82. N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012). https://doi.org/10.1103/RevModPhys.84.1419

    Article  CAS  Google Scholar 

  83. E. Prodan, W. Kohn, Proc. Natl. Acad. Sci. 102, 11635 (2005). https://doi.org/10.1073/pnas.0505436102

    Article  CAS  Google Scholar 

  84. P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, S. Baroni, J. Chem. Phys. 152, 154105 (2020). https://doi.org/10.1063/5.0005082

    Article  CAS  Google Scholar 

  85. H.-Y. Ko, J. Jia, B. Santra, X. Wu, R. Car, R.A. DiStasio Jr., J. Chem. Theor. Comput. 16, 3757 (2020). https://doi.org/10.1021/acs.jctc.9b01167

    Article  Google Scholar 

  86. M. Hutchinson, M. Widom, Comput. Phys. Commun. 183, 1422 (2012). https://doi.org/10.1016/j.cpc.2012.02.017

    Article  CAS  Google Scholar 

  87. X. Andrade, A. Aspuru-Guzik, J. Chem. Theor. Comput. 9, 4360 (2013)

    Article  CAS  Google Scholar 

  88. W. Jia, L.-W. Wang, and L. Lin, in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, series and number SC ’19 ( Association for Computing Machinery, New York, NY, USA, 2019) https://doi.org/10.1145/3295500.3356144

  89. X. Andrade, C.D. Pemmaraju, A. Kartsev, J. Xiao, A. Lindenberg, S. Rajpurohit, L.Z. Tan, T. Ogitsu, A.A. Correa, J. Chem. Theor. Comput. 17, 7447 (2021). https://doi.org/10.1021/acs.jctc.1c00562

    Article  CAS  Google Scholar 

  90. D. Wing, J.B. Haber, R. Noff, B. Barker, D.A. Egger, A. Ramasubramaniam, S.G. Louie, J.B. Neaton, L. Kronik, Phys. Rev. Mater. 3, 064603 (2019). https://doi.org/10.1103/PhysRevMaterials.3.064603

    Article  CAS  Google Scholar 

  91. H. Zheng, M. Govoni, G. Galli, Phys. Rev. Mater. 3, 073803 (2019). https://doi.org/10.1103/PhysRevMaterials.3.073803

    Article  CAS  Google Scholar 

  92. T. Stein, L. Kronik, R. Baer, J. Chem. Phys. 131, 244119 (2009). https://doi.org/10.1063/1.3269029

    Article  CAS  Google Scholar 

  93. A. Pribram-Jones, K. Burke, Phys. Rev. B 93, 205140 (2016). https://doi.org/10.1103/PhysRevB.93.205140

    Article  CAS  Google Scholar 

  94. K. Burke, J.C. Smith, P.E. Grabowski, A. Pribram-Jones, Phys. Rev. B 93, 195132 (2016). https://doi.org/10.1103/PhysRevB.93.195132

    Article  CAS  Google Scholar 

  95. A. Pribram-Jones, P.E. Grabowski, K. Burke, Phys. Rev. Lett. 116, 233001 (2016). https://doi.org/10.1103/PhysRevLett.116.233001

    Article  CAS  Google Scholar 

  96. E.W. Brown, B.K. Clark, J.L. DuBois, D.M. Ceperley, Phys. Rev. Lett. 110, 146405 (2013). https://doi.org/10.1103/PhysRevLett.110.146405

    Article  CAS  Google Scholar 

  97. T. Dornheim, S. Groth, M. Bonitz, Phys. Rep. 744, 1 (2018). https://doi.org/10.1016/j.physrep.2018.04.001

    Article  CAS  Google Scholar 

  98. V.V. Karasiev, J.W. Dufty, S. Trickey, Phys. Rev. Lett. 120, 076401 (2018). https://doi.org/10.1103/PhysRevLett.120.076401

    Article  CAS  Google Scholar 

  99. V. Karasiev, S. Hu, M. Zaghoo, T. Boehly, Phys. Rev. B 99, 214110 (2019). https://doi.org/10.1103/PhysRevB.99.214110

    Article  CAS  Google Scholar 

  100. M.P. Desjarlais, C.R. Scullard, L.X. Benedict, H.D. Whitley, R. Redmer, Phys. Rev. E 95, 033203 (2017). https://doi.org/10.1103/PhysRevE.95.033203

    Article  Google Scholar 

Download references

Acknowledgments

A. S. acknowledges fruitful discussions with Peter Kratzer. This material is based upon work supported by the Office of Naval Research (Grant No. N00014-18-1-2605) and the National Science Foundation (Grant No. OAC-1740219). A. K., B. R., and A. D. B. were supported by Sandia’s Laboratory Directed Research and Development (LDRD) Project No. 218456 and the US Department of Energy’s Science Campaign 1. This article has been co-authored by employees of National Technology & Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Department of Energy (DOE). The authors own all right, title and interest in and to the article and are responsible for its contents. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article or allow others to do so, for United States Government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan https://www.energy.gov/downloads/doe-public-access-plan. X. A. and A. A. C. work were supported by the Center for Non-Perturbative Studies of Functional Materials Under Non-Equilibrium Conditions (NPNEQ) funded by the Materials Sciences and Engineering Division, Computational Materials Sciences Program of the U.S. Department of Energy, Office of Science, Basic Energy Sciences and performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Y. Y. and Y. K. were supported by the National Science Foundation under Award Nos. CHE-1954894 and OAC-17402204. Support from the IAEA F11020 CRP “Ion Beam Induced Spatio-temporal Structural Evolution of Materials: Accelerators for a New Technology Era” is gratefully acknowledged. This research is partially supported by the NCSA-Inria-ANL-BSC-JSC-Riken-UTK Joint-Laboratory for Extreme Scale Computing (JLESC, https://jlesc.github.io/). A. S. acknowledges support as Mercator Fellow within SFB 1242 at the University Duisburg-Essen. E. C. was supported by DOE Office of Advanced Scientific Computing Research under Contract DE-AC02-06CH11357. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract 89233218CNA000001) and Sandia National Laboratories (Contract DE-NA-0003525). This research is part of the Blue Waters sustained petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This work made use of the Illinois Campus Cluster, a computing resource that is operated by the Illinois Campus Cluster Program (ICCP) in conjunction with the National Center for Supercomputing Applications (NCSA) and which is supported by funds from the University of Illinois at Urbana-Champaign. An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

Funding

Funding sources are acknowledged in the acknowledgement section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Schleife.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kononov, A., Lee, CW., dos Santos, T.P. et al. Electron dynamics in extended systems within real-time time-dependent density-functional theory. MRS Communications 12, 1002–1014 (2022). https://doi.org/10.1557/s43579-022-00273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00273-7

Keywords

Navigation