Skip to main content
Log in

Exchange-correlation functionals of i-DFT for asymmetrically coupled leads

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A recently proposed density functional approach for steady-state transport through nanoscale systems (called i-DFT) is used to investigate junctions which are asymmetrically coupled to the leads and biased with asymmetric voltage drops. In the latter case, the system can simply be transformed to a physically equivalent one with symmetric voltage drop by a total energy shift of the entire system. For the former case, known exchange correlation gate and bias functionals have to be generalized to take into account the asymmetric coupling to the leads. We show how differential conductance spectra of the constant interaction model evolve with increasing asymmetry of both voltage drops and coupling to the leads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Agraït, A.L. Yegati, J.M. van Ruitenbeek, Phys. Rep. 377, 81 (2003)

    Article  ADS  Google Scholar 

  2. D. Goldhaber-Gordon et al., Nature 391, 156 (1998)

    Article  ADS  Google Scholar 

  3. J. Park et al., Nature 417, 722 (2002)

    Article  ADS  Google Scholar 

  4. H. Grabert, M.H. Devoret, Single charge tunneling (Plenum Press, New York, 1992)

  5. A.R. Champagne, A.N. Pasupathy, D.C. Ralph, Nano Lett. 5, 305 (2005)

    Article  ADS  Google Scholar 

  6. V. Madhavan, W. Chen, T. Jamneala, M.F. Crommie, N.S. Wingreen, Science 280, 567 (1998)

    Article  ADS  Google Scholar 

  7. J. Li, W.-D. Schneider, R. Berndt, B. Delley, Phys. Rev. Lett. 80, 2893 (1998)

    Article  ADS  Google Scholar 

  8. N. Knorr, M.A. Schneider, L. Diekhöner, P. Wahl, K. Kern, Phys. Rev. Lett. 88, 096804 (2002)

    Article  ADS  Google Scholar 

  9. A. Zhao et al., Science 309, 1542 (2005)

    Article  ADS  Google Scholar 

  10. V. Iancu, A. Deshpande, S.-W. Hla, Nano Lett. 6, 820 (2006)

    Article  ADS  Google Scholar 

  11. C.F. Hirjibehedin et al., Science 317, 1199 (2007)

    Article  ADS  Google Scholar 

  12. J.J. Parks et al., Science 328, 1370 (2010)

    Article  ADS  Google Scholar 

  13. J.C. Oberg et al., Nat. Nanotechnol. 9, 64 (2014)

    Article  ADS  Google Scholar 

  14. S. Karan et al., Nano Lett. 18, 88 (2018)

    Article  ADS  Google Scholar 

  15. B.C. Stipe, M.A. Rezaei, W. Ho, Science 280, 1732 (1998)

    Article  ADS  Google Scholar 

  16. J.R. Hahn, H.J. Lee, W. Ho, Phys. Rev. Lett. 85, 1914 (2000)

    Article  ADS  Google Scholar 

  17. N.D. Lang, Phys. Rev. B 52, 5335 (1995)

    Article  ADS  Google Scholar 

  18. R. Landauer, IBM J. Res. Dev. 1, 233 (1957)

    Article  Google Scholar 

  19. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

  20. G. Stefanucci, S. Kurth, Nano Lett. 15, 8020 (2015)

    Article  ADS  Google Scholar 

  21. G. Stefanucci, S. Kurth, Phys. Rev. Lett. 107, 216401 (2011)

    Article  ADS  Google Scholar 

  22. J.P. Bergfield, Z.-F. Liu, K. Burke, C.A. Stafford, Phys. Rev. Lett. 108, 066801 (2012)

    Article  ADS  Google Scholar 

  23. P. Tröster, P. Schmitteckert, F. Evers, Phys. Rev. B 85, 115409 (2012)

    Article  ADS  Google Scholar 

  24. D. Jacob, J. Phys: Condens. Matter 27, 245606 (2015)

    ADS  Google Scholar 

  25. A. Droghetti, I. Rungger, Phys. Rev. B 95, 085131 (2017)

    Article  ADS  Google Scholar 

  26. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  27. S. Kurth, G. Stefanucci, C.-O. Almbladh, A. Rubio, E.K.U. Gross, Phys. Rev. B 72, 035308 (2005)

    Article  ADS  Google Scholar 

  28. J. Maciejko, J. Wang, H. Guo, Phys. Rev. B 74, 085324 (2006)

    Article  ADS  Google Scholar 

  29. V. Moldoveanu, V. Gudmundsson, A. Manolescu, Phys. Rev. B 76, 085330 (2007)

    Article  ADS  Google Scholar 

  30. P. Bokes, F. Corsetti, R.W. Godby, Phys. Rev. Lett. 101, 046402 (2008)

    Article  ADS  Google Scholar 

  31. A. Prociuk, B.D. Dunietz, Phys. Rev. B 78, 165112 (2008)

    Article  ADS  Google Scholar 

  32. A. Croy, U. Saalmann, Phys. Rev. B 80, 245311 (2009)

    Article  ADS  Google Scholar 

  33. X. Zheng et al., J. Chem. Phys. 133, 114101 (2010)

    Article  ADS  Google Scholar 

  34. C. Yam et al., Phys. Rev. B 83, 245448 (2011)

    Article  ADS  Google Scholar 

  35. G. Stefanucci, C.-O. Almbladh, EPL 67, 14 (2004)

    Article  ADS  Google Scholar 

  36. F. Evers, F. Weigend, M. Koentopp, Phys. Rev. B 69, 235411 (2004)

    Article  ADS  Google Scholar 

  37. N. Sai, M. Zwolak, G. Vignale, M. Di Ventra, Phys. Rev. Lett. 94, 186810 (2005)

    Article  ADS  Google Scholar 

  38. M. Koentopp, K. Burke, F. Evers, Phys. Rev. B 73, 121403 (2006)

    Article  ADS  Google Scholar 

  39. G. Stefanucci, S. Kurth, E.K.U. Gross, A. Rubio, Theor. Comput. Chem. 17, 247 (2007)

    Article  Google Scholar 

  40. G. Vignale, M. Di Ventra, Phys. Rev. B 79, 014201 (2009)

    Article  ADS  Google Scholar 

  41. V.U. Nazarov, G. Vignale, Y.-C. Chang, Phys. Rev. B 89, 241108 (2014)

    Article  ADS  Google Scholar 

  42. S. Kurth, G. Stefanucci, Phys. Rev. B 94, 241103 (2016)

    Article  ADS  Google Scholar 

  43. S. Kurth, G. Stefanucci, J. Phys: Condens. Matter 29, 413002 (2017)

    Google Scholar 

  44. D. Jacob, S. Kurth, Nano Lett. 18, 2086 (2018)

    Article  ADS  Google Scholar 

  45. P.W. Anderson, Phys. Rev. 124, 41 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  46. C.W.J. Beenakker, Phys. Rev. B 44, 1646 (1991)

    Article  ADS  Google Scholar 

  47. G. Stefanucci, S. Kurth, Phys. Stat. Sol. (b) 250, 2378 (2013)

    Article  ADS  Google Scholar 

  48. S. Motahari, R. Requist, D. Jacob, Phys. Rev. B 94, 235133 (2016)

    Article  ADS  Google Scholar 

  49. S.G. Jakobs, M. Pletyukhov, H. Schoeller, Phys. Rev. B 81, 195109 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Jacob.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurth, S., Jacob, D. Exchange-correlation functionals of i-DFT for asymmetrically coupled leads. Eur. Phys. J. B 91, 101 (2018). https://doi.org/10.1140/epjb/e2018-90184-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90184-7

Navigation