Skip to main content
Log in

Dynamic correlation effects on drag resistivity of a symmetric electron–electron bilayer

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have studied the effect of dynamic electron correlations on Coulomb drag in a low density symmetric electron–electron bilayer. The drag resistivity is calculated considering the contribution from direct e–e scattering processes using the semi-classical Boltzmann approach, with the effective inter-layer interaction W12(q, ω; T) determined within the Świerkowski, Szymanśki, and Gortel model, generalized to include the dynamics of electron correlations through the frequency-dependent intra- and inter-layer local-field correction (LFC) factors. In turn, the LFCs are obtained by extending the quantum Singwi, Tosi, Land, and Sjölander (qSTLS) approach to finite temperatures. At low temperatures (T ≲ 2 K), the calculated drag resistivity is found to agree nicely with the measurements by Kellogg et al., while it is somewhat overestimated at higher temperatures. The overestimation is seen to increase with decreasing density of electrons. However, there is found to be a marked improvement over the predictions of the conventional (i.e., static) STLS and random-phase approximation (RPA). It turns out that the inclusion of exchange-correlations in the RPA causes a red-shift in the bilayer plasmons which leads to an enhancement of drag resistivity. Our study demonstrates clearly the importance of including the dynamical nature of correlations to have a reasonable account of measured drag resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.N. Narozhny, A. Levchenko, Rev. Mod. Phys. 88, 25003 (2016)

    Article  Google Scholar 

  2. T.J. Gramila, J.P. Eisenstein, A.H. MacDonald, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 66, 1216 (1991)

    Article  ADS  Google Scholar 

  3. N.P.R. Hill, J.T. Nicholls, E.H. Linfield, M. Pepper, D.A. Ritchie, G.A.C. Jones, B.-K. Hu, K. Flensberg, Phys. Rev. Lett. 78, 2204 (1997)

    Article  ADS  Google Scholar 

  4. H. Noh, S. Zelakiewicz, X.G. Feng, T.J. Gramila, L.N. Pfeiffer, K.W. West, Phys. Rev. B 58, 12621 (1998)

    Article  ADS  Google Scholar 

  5. M. Kellogg, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Solid State Commun. 123, 515 (2002)

    Article  ADS  Google Scholar 

  6. R. Pillarisetty, H. Noh, D.C. Tsui, E.P. De Poortere, E. Tutuc, M. Shayegan, Phys. Rev. Lett. 89, 016805 (2002)

    Article  ADS  Google Scholar 

  7. A.F. Croxall, K. Das Gupta, C.A. Nicoll, M. Thangaraj, H.E. Beere, I. Farrer, D.A. Ritchie, M. Pepper, Phys. Rev. Lett. 101, 246801 (2008)

    Article  ADS  Google Scholar 

  8. C.P. Morath, J.A. Seamons, J.L. Reno, M.P. Lilly, Phys. Rev. B 78, 115318 (2008)

    Article  ADS  Google Scholar 

  9. J.A. Seamons, C.P. Morath, J.L. Reno, M.P. Lilly, Phys. Rev. Lett. 102, 026804 (2009)

    Article  ADS  Google Scholar 

  10. A.F. Croxall, K. Das Gupta, C.A. Nicoll, H.E. Beere, I. Farrer, D.A. Ritchie, M. Pepper, Phys. Rev. B 80, 125323 (2009)

    Article  ADS  Google Scholar 

  11. B. Zheng, A.F. Croxall, J. Waldie, K.D. Gupta, F. Sfigakis, I. Farrer, H.E. Beere, D.A. Ritchie, Appl. Phys. Lett. 108, 062102 (2016)

    Article  ADS  Google Scholar 

  12. U.S. de Cumis, J. Waldie, A.F. Croxall, D. Taneja, J. Llandro, I. Farrer, H.E. Beere, D.A. Ritchie, Appl. Phys. Lett. 110, 072105 (2017)

    Article  ADS  Google Scholar 

  13. K. Flensberg, B. Yu-Kuang Hu, Phys. Rev. Lett. 73, 3572 (1994)

    Article  ADS  Google Scholar 

  14. A.G. Rojo, J. Phys. Condens. Matter 11, R31 (1999)

    Article  ADS  Google Scholar 

  15. R. Asgari, B. Tanatar, B. Davoudi, Phys. Rev. B 77, 115301 (2008)

    Article  ADS  Google Scholar 

  16. K.S. Singwi, M.P. Tosi, R.H. Land, A. Sjölander, Phys. Rev. 176, 589 (1968)

    Article  ADS  Google Scholar 

  17. See for instance, L.J. Lantto, P.J. Siemens, Nucl. Phys. A 317, 55 (1979); L.J. Lantto, Phys. Rev. B 36, 5160 (1987)

  18. S.M. Badalyan, C.S. Kim, G. Vignale, G. Senatore, Phys. Rev. B 75, 125321 (2007)

    Article  ADS  Google Scholar 

  19. T. Hasegawa, M. Shimizu, J. Phys. Soc. Jpn 38, 965 (1975); ibid. 39, 569 (1975)

    Article  ADS  Google Scholar 

  20. H.K. Schweng, H.M. Bohm, Phys. Rev. B 48, 2037 (1993)

    Article  ADS  Google Scholar 

  21. R.K. Moudgil, G. Senatore, L.K. Saini, Phys. Rev. B 66, 205316 (2002)

    Article  ADS  Google Scholar 

  22. A.P. Jauho, H. Smith, Phys. Rev. B 47, 4420 (1993)

    Article  ADS  Google Scholar 

  23. K. Flensberg, B. Yu-Kuang Hu, Phys. Rev. B 52, 14796 (1995)

    Article  ADS  Google Scholar 

  24. L. Zheng, A.H. MacDonald, Phys. Rev. B 48, 8203 (1993)

    Article  ADS  Google Scholar 

  25. A. Kamenev, Y. Oreg, Phys. Rev. B 52, 7516 (1995)

    Article  ADS  Google Scholar 

  26. L. Świerkowski, J. Szymanśki, Z.W. Gortel, Phys. Rev. Lett. 74, 3245 (1995); Phys. Rev. B 55, 2280 (1997)

    Article  ADS  Google Scholar 

  27. G. Vignale, K.S. Singwi, Phys. Rev. B 31, 2729 (1985)

    Article  ADS  Google Scholar 

  28. C.F. Richardson, N.W. Ashcroft, Phys. Rev. B 55, 15130 (1997)

    Article  ADS  Google Scholar 

  29. S. Tanaka, S. Ichimaru, J. Phys. Soc. Jpn 55, 2278 (1986)

    Article  ADS  Google Scholar 

  30. P.F. Maldague, Surf. Sci. 73, 296 (1978)

    Article  ADS  Google Scholar 

  31. R.K. Moudgil, P.K. Ahluwalia, K.N. Pathak, Phys. Rev. B 52, 11945 (1995)

    Article  ADS  Google Scholar 

  32. J. Hubbard, Proc. R. Soc. Lond. A 243, 336 (1958); M. Jonson, J. Phys. C 9, 3055 (1976)

    Article  ADS  Google Scholar 

  33. A. Yurtsever, V. Moldoveanu, B. Tanatar, Phys. Rev. B 67, 115308 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Moudgil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, P., Singh, G. & Moudgil, R.K. Dynamic correlation effects on drag resistivity of a symmetric electron–electron bilayer. Eur. Phys. J. B 91, 181 (2018). https://doi.org/10.1140/epjb/e2018-90127-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90127-4

Keywords

Navigation