Skip to main content
Log in

Study of drag resistivity in dielectric medium with the correlations effect

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We study the drag resistivity numerically for charge carriers in a specially separated electron-electron (e-e) bilayer system for both the symmetric and asymmetric case in weak interaction and Boltzmann regime. Interaction in Coulomb drag effect is based on Coulomb interaction in a specially separated bilayer systems. Random phase approximation (RPA) method is used to find the drag resistivity. Simply RPA method is a reliable method for high-density regime where exchange and correlation effects do not impact too much. On lowering the density, the exchange and correlation effects are significant which are included by suggesting the local field correction (LFC) in effective interlayer interactions. The drag resistivity is noticed improvement on employing the LFC. Impact of exchange and correlation based LFC increase on increasing the temperature and decreasing the concentration. Predictable behaviour is shown by the dependency of drag resistivity on temperature, density, interlayer spacing, and dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. R.E.V. Profumo, M. Polini, R. Asgari, R. Fazio, A.H. MacDonald, Electron-electron interactions in decoupled graphene layers. Phys. Rev. B (2010). https://doi.org/10.1103/PhysRevB.82.085443

    Article  Google Scholar 

  2. B. Scharf, A. Matos-Abiague, Coulomb drag between massless and massive fermions. Phys. Rev. B (2012). https://doi.org/10.1103/PhysRevB.86.115425

    Article  Google Scholar 

  3. A. Gamucci, D. Spirito, M. Carrega, B. Karmakar, A. Lombardo, M. Bruna, L.N. Pfeiffer, K.W. West, A.C. Ferrari, M. Polini, V. Pellegrini, Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures. Nat. Commun. 5(1), 5824 (2014). https://doi.org/10.1038/ncomms6824

    Article  ADS  Google Scholar 

  4. P. Simonet, S. Hennel, H. Overweg, R. Steinacher, M. Eich, R. Pisoni, Y. Lee, P. Märki, T. Ihn, K. Ensslin, M. Beck, J. Faist, Anomalous Coulomb drag between bilayer graphene and a GaAs electron gas. New J. Phys. (2017). https://doi.org/10.1088/1367-2630/aa887e

    Article  Google Scholar 

  5. S.K. Upadhyay, L.K. Saini, Coulomb drag study in electron-electron bilayer system with a dielectric medium. Phys. E: Low-dimens. Syst. Nanostruct. 124, 114350 (2020)

    Article  Google Scholar 

  6. S.K. Upadhyay, L.K. Saini, Coulomb Drag of Electron-Electron Interactions in GaAs Bilayer with a Non Homogeneous Dielectric Background. Adv. Mater. Lett. 11(7), 20071539 (2020). https://doi.org/10.5185/amlett.2020.071539. https://www.vbripress.com/aml/articles/details/1532

  7. S.K. Upadhyay, L.K. Saini, Drag resistivity in InAs/GaAs and InAs/GaSb bilayer due to electron-electron interactions. AIP Conference Proceedings 2220(1) (2020). https://doi.org/10.1063/5.0002594

  8. L.K. Saini, S.K. Upadhyay, B.P. Bahuguna, Investigations of optical and thermoelectric response of GaBi monolayer. AIP Conference Proceedings 2220(1) (2020). https://doi.org/10.1063/5.0002593

  9. S.K. Upadhyay, L. Saini, Physica E: Low-dimensional Systems and Nanostructures p. 114484 (2020). https://doi.org/10.1016/j.physe.2020.114484. http://www.sciencedirect.com/science/article/pii/S1386947720315526

  10. P.J. Price, Hot electron effects in heterolayers. Phys. B+C 117–118, 750 (1983). https://doi.org/10.1016/0378-4363(83)90642-3

    Article  ADS  Google Scholar 

  11. A. Yurtsever, V. Moldoveanu, B. Tanatar, Many-body effects in the Coulomb drag between low density electron layers. Solid State Commun. 125(11), 575 (2003). https://doi.org/10.1016/S0038-1098(03)00081-4

    Article  ADS  Google Scholar 

  12. R. Asgari, B. Tanatar, B. Davoudi, Comparative study of screened interlayer interactions in the Coulomb drag effect in bilayer electron systems. Phys. Rev. B (2008). https://doi.org/10.1103/PhysRevB.77.115301

    Article  Google Scholar 

  13. P. Arora, G. Singh, R.K. Moudgil, Dynamic correlation effects on drag resistivity of a symmetric electronâEUR’’electron bilayer. Eur. Phys. J. B 91(8), 181 (2018). https://doi.org/10.1140/epjb/e2018-90127-4

    Article  ADS  Google Scholar 

  14. D.Y.H. Ho, I. Yudhistira, B.Y.K. Hu, S. Adam, Theory of Coulomb drag in spatially inhomogeneous 2D materials. Commun. Phys. 1(1), 41 (2018). https://doi.org/10.1038/s42005-018-0039-y

    Article  Google Scholar 

  15. M. Kellogg, I.B. Spielman, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Evidence for 2kF electron-electron scattering processes in Coulomb drag. Phys. Rev. Lett. (2002). https://doi.org/10.1103/PhysRevLett.88.126804

    Article  Google Scholar 

  16. A.S. Price, A.K. Savchenko, B.N. Narozhny, G. Allison, D.A. Ritchie, Giant Fluctuations of Coulomb Drag in a Bilayer System. Science 316(5821), 99 (2007). https://doi.org/10.1126/science.1139227. http://science.sciencemag.org/content/316/5821/99

  17. B. Zheng, A.F. Croxall, J. Waldie, K. Das Gupta, F. Sfigakis, I. Farrer, H.E. Beere, D.A. Ritchie, Switching between attractive and repulsive Coulomb-interaction-mediated drag in an ambipolar GaAs/AlGaAs bilayer device. Appl. Phys. Lett. 108(6), 062102 (2016). https://doi.org/10.1063/1.4941760

    Article  ADS  Google Scholar 

  18. T. Vazifehshenas, T. Salavati-fard, Inelastic Coulomb scattering rate within the finite-temperature Hubbard approximation. Physica Scripta (2010). https://doi.org/10.1088/0031-8949/81/02/025701

    Article  MATH  Google Scholar 

  19. T. Salavati-fard, T. Vazifehshenas, Local field correction effect on inelastic Coulomb scattering lifetime of two-dimensional quasiparticles at low temperatures. Physica B: Condensed Matter 406(10), 1883 (2011). https://doi.org/10.1016/j.physb.2011.02.047. http://www.sciencedirect.com/science/article/pii/S0921452611001694

  20. G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005). https://doi.org/10.1017/CBO9780511619915

    Book  Google Scholar 

  21. B. Amorim, N.M.R. Peres, On Coulomb drag in double layer systems. J. Phys.: Condens. Matter (2012). https://doi.org/10.1088/0953-8984/24/33/335602

    Article  Google Scholar 

  22. M. Carrega, T. Tudorovskiy, A. Principi, M.I. Katsnelson, M. Polini, Theory of Coulomb drag for massless Dirac fermions. New J. Phys. (2012). https://doi.org/10.1088/1367-2630/14/6/063033

    Article  MATH  Google Scholar 

  23. N.V. Men, D.T.K. Phuong, Plasmon modes in bilayer-graphene-GaAs heterostructures including layer-thickness and exchange-correlation effects. Int. J. Modern Phys. B 32(23), 1850256 (2018). https://doi.org/10.1142/S0217979218502569

    Article  ADS  Google Scholar 

  24. N.V. Men, N.Q. Khanh, Plasmon modes in graphene-GaAs heterostructures. Physics Letters A 381(44), 3779 (2017). https://doi.org/10.1016/j.physleta.2017.09.047. http://www.sciencedirect.com/science/article/pii/S0375960117309441

  25. R. Pillarisetty, H. Noh, D.C. Tsui, E.P. De Poortere, E. Tutuc, M. Shayegan, Frictional drag between two dilute two-dimensional hole layers. Phys. Rev. Lett. (2002). https://doi.org/10.1103/PhysRevLett.89.016805

    Article  Google Scholar 

  26. R. Pillarisetty, H. Noh, E. Tutuc, E.P. De Poortere, K. Lai, D.C. Tsui, M. Shayegan, Coulomb drag near the metal-insulator transition in two dimensions. Phys. Rev. B (2005). https://doi.org/10.1103/PhysRevB.71.115307

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. K. N. Pathak for very useful, helpful and stimulating discussions. My research work in SVNIT was supported by the Indian Ministry of Education through the grant of CSIR and MHRD. We acknowledge the CSIR under the JRF and SRF fellowship, file no. 09/1007(0004)/2018-EMR-I for financial support in our research.

Author information

Authors and Affiliations

Authors

Contributions

SKU helped in conceptualization, methodology, validation, investigation, writing–original draft, visualization; LKS contributed to supervision.

Corresponding author

Correspondence to L. K. Saini.

Ethics declarations

Conflict of interest

The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome. We also confirm that the manuscript has been read and approved by all named authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, S.K., Saini, L.K. Study of drag resistivity in dielectric medium with the correlations effect. Appl. Phys. A 127, 276 (2021). https://doi.org/10.1007/s00339-021-04422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04422-y

Keywords

Navigation