Skip to main content
Log in

Transmission of the spin-spin coupling constants through hydrogen bonds in ammonia clusters

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Spin-spin coupling constants are reported using six ab initio and fifteen DFT methods for dimers and larger clusters of ammonia. An analysis of components (Fermi contact, spin dipole, paramagnetic spin-orbit, and diamagnetic spin-orbit) of more relevant coupling constants 1JNH, 1hJNH′ and 2hJNN has been carried out. Fermi contact is the dominant term in the total value for all constants. For dimers, a relationship between the addition of direct and intermolecular coupling constants gives the direct constants of monomer. From the comparison of all ab initio and DFT methods for dimers, SOPPA(CCSD) and S55VWN5 methods are, respectively, more reliable taking into account their accuracy and the computing time. Both methods are employed for the analysis of the transmission of coupling constants through the hydrogen bond for ammonia clusters. A linear relation between the intermolecular constants 1hJNH′ and the length of the hydrogen bond is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 1, 636 (2008)

    Article  ADS  Google Scholar 

  2. G.A. Jeffrey, W. Saenger, Hydrogen bonding in biology and chemistry (Springer-Verlag, Berlin, 1991)

  3. S.J. Grabowski, Ed., Hydrogen bonding: new insights (Springer, Dordrecht, 2006)

  4. S. Twagirayezu, G.E. Hall, T.J. Sears, J. Chem. Phys. 145, 144302 (2016)

    Article  ADS  Google Scholar 

  5. A. Scherrer, F. Agostini, D. Sebastiani, E.K.U. Gross, Phys. Rev. X 7, 031035 (2017)

    Google Scholar 

  6. G.A. Jeffrey, An introduction to hydrogen bonding (Oxford University Press, New York, 1997)

  7. J.A. Odutola, T.R. Dyke, J. Howard, J.S. Muenter, J. Chem. Phys. 70, 4884 (1979)

    Article  ADS  Google Scholar 

  8. K. Hirao, T. Fujikawa, H. Konishi, S. Yamabe, Chem.Phys. Lett. 104, 184 (1985)

    Article  ADS  Google Scholar 

  9. D.D. Nelson Jr., G.T. Fraser, W. Klemperer, F. Lovas, R.D. Suenram, J. Chem. Phys. 83, 6201 (1979)

    Article  ADS  Google Scholar 

  10. D.D. Nelson Jr., G.T. Fraser, W. Klemperer, F. Lovas, R.D. Suenram, J. Chem. Phys. 87, 6364 (1987)

    Article  ADS  Google Scholar 

  11. M. Snels, R. Fantoni, R. Sanders, W.L. Meerts, Chem. Phys. 115, 79 (1987)

    Article  ADS  Google Scholar 

  12. B. Heijmen, A. Bizzarri, S. Stolte, J. Reuss, Chem. Phys. 126, 201 (1988)

    Article  ADS  Google Scholar 

  13. H.D. Barth, F. Huisken, J. Chem. Phys. 87, 2549 (1987)

    Article  ADS  Google Scholar 

  14. B. Heijmen, A. Bizzarri, S. Stolte, J. Reuss, Chem. Phys. 126, 213 (1988)

    Article  Google Scholar 

  15. J.C. Greer, R. Ahlrichs, I.V. Hertel, Chem. Phys. 133, 191 (1989)

    Article  ADS  Google Scholar 

  16. D.M. Hassett, C.J. Marsden, B. Smith, Chem. Phys. Lett. 183, 449 (1991)

    Article  ADS  Google Scholar 

  17. J.G. Loeser, C.A. Schmuttenmaer, R.C. Cohen, M.J. Elrod, D.W. Steyert, R.J. Saykally, R.E. Bumgarnefl, G.A. Blake, J. Chem. Phys. 97, 4727 (1992)

    Article  ADS  Google Scholar 

  18. J.W.I. van Bladel, A. van der Avoird, P.E.S. Wormer, R.J. Saykally, J. Chem. Phys. 97, 4750 (1992)

    Article  ADS  Google Scholar 

  19. F.M. Tao, W. Klemperer, J. Chem. Phys. 99, 5976 (1993)

    Article  ADS  Google Scholar 

  20. E.H.T. Olthof, A. Van der Avoird, P.E.S. Wormer, J. Chem. Phys. 101, 8430 (1994)

    Article  ADS  Google Scholar 

  21. M. Diraison, G.J. Martyna, M.E. Tuckerman, J. Chem. Phys. 101, 1096 (1999)

    Article  ADS  Google Scholar 

  22. J.S. Lee, S.Y. Park, J. Chem. Phys. 112, 230 (2000)

    Article  ADS  Google Scholar 

  23. T. Beu, U. Buck, J. Chem. Phys. 114, 7848 (2001)

    Article  ADS  Google Scholar 

  24. T. Beu, U. Buck, J. Chem. Phys. 114, 7853 (2001)

    Article  ADS  Google Scholar 

  25. S. Kulkarni, R. Pathak, Chem. Phys. Lett. 336, 278 (2001)

    Article  ADS  Google Scholar 

  26. N. Huang, A.D. MacKerell Jr., J. Phys. Chem. A 106, 7820 (2002)

    Article  Google Scholar 

  27. A.D. Boese, A. Chandra, J.M.L. Martin, D. Marx, J. Chem. Phys. 119, 5965 (2003)

    Article  ADS  Google Scholar 

  28. T. Beu, U. Buck, Eur. Phys. J. D 27, 223 (2003)

    Article  ADS  Google Scholar 

  29. F.M. Abu-Awwad, THEOCHEM 683, 5763 (2004)

    Article  Google Scholar 

  30. Y. Liu, M.A. Suhm, P. Bostschwina, Phys. Chem. Chem. Phys. 6, 4642 (2004)

    Article  Google Scholar 

  31. M. Jetzki, A. Bonnamy, R. Signorell, J. Chem. Phys. 120, 11775 (2004)

    Article  ADS  Google Scholar 

  32. J. Altmann, M. Govender, T. Ford, Mol. Phys. 103, 949 (2005)

    Article  ADS  Google Scholar 

  33. C. Steinbach, U. Buck, T.A. Beu, J. Chem. Phys. 125, 133403 (2006)

    Article  ADS  Google Scholar 

  34. P.E. Janeiro-Barral, M. Mella, J. Phys. Chem. 110, 11244 (2006)

    Article  Google Scholar 

  35. M.N. Slipchenko, K.E. Kuyanov, B.G. Sartakov, A.F. Vilesov, J. Chem. Phys. 124, 241101 (2006)

    Article  ADS  Google Scholar 

  36. M.N. Slipchenko, B.G. Sartakov, A.F. Vilesov, S.S. Xantheas, J. Phys. Chem. A 111, 7460 (2007)

    Article  Google Scholar 

  37. P.E. Janeiro-Barral, M. Mella, E. Curotto, J. Phys. Chem. A 112, 2888 (2008)

    Article  Google Scholar 

  38. M.N. Slipchenko, B.G. Sartakov, A.F. Vilesov, J. Chem. Phys. 128, 134509 (2008)

    Article  ADS  Google Scholar 

  39. Y. Matsumoto, K. Honma, Chem. Phys. Lett. 490, 9 (2010)

    Article  ADS  Google Scholar 

  40. C. Lubombo, E. Curotto, P.E. Janeiro-Barral, M. Mella, J. Chem. Phys. 131, 034312 (2009)

    Article  ADS  Google Scholar 

  41. L. Yu, Z. Yang., J. Chem. Phys. 132, 174109 (2010)

    Article  ADS  Google Scholar 

  42. M. Katada, R. Shishido, A. Fujii, Phys. Chem. Chem. Phys. 16, 7595 (2014)

    Article  Google Scholar 

  43. A. Malloum, J.J. Fifen, Z. Dhaouadi, S.G.N. Engo, N.E. Jaidane, Phys. Chem. Chem. Phys. 17, 29226 (2015)

    Article  Google Scholar 

  44. S.R. Gadre, S.D. Yeole, N. Sahu, Chem. Rev. 114, 12132 (2014)

    Article  Google Scholar 

  45. T. Helgaker, M. Jaszuński, K. Ruud, Chem. Rev. 99, 293 (1999)

    Article  Google Scholar 

  46. L.B. Krivdin, R.H. Contreras, Annu. Rep. NMR Spectrosc. 61, 133 (2007)

    Article  Google Scholar 

  47. T. Helgaker, M. Jaszuński, M. Pecul, Prog. Nucl. Magn. Reson. Spectrosc. 53, 249 (2008)

    Article  Google Scholar 

  48. Y.Y. Rusakov, L.B. Krivdin, Russ. Chem. Rev. 82, 99 (2013)

    Article  ADS  Google Scholar 

  49. R.M. Gester, H.C. Georg, S. Canuto, M.C. Caputo, P.F. Provasi, J. Phys. Chem. A 113, 14936 (2009)

    Article  Google Scholar 

  50. A. Yachmenev, S.N. Yurchenko, I. Paidarov, P. Jensen, W. Thiel, S.P.A. Sauer, J. Chem. Phys. 132, 114305 (2016)

    Article  ADS  Google Scholar 

  51. M. Pecul, J. Sadlej, Chem. Phys. Lett. 360, 272 (2002)

    Article  ADS  Google Scholar 

  52. R.E. Hubbard, M.K. Haider, Hydrogen bonds in proteins: role and strength, in Encyclopedia of life sciences (John Wiley & Sons Ltd, Chichester, 2010)

  53. J. San Fabián, S. Omar, J.M. García de la Vega, J. Chem. Phys. 145, 084301 (2016)

    Article  ADS  Google Scholar 

  54. J.M. García de la Vega, S. Omar, J. San Fabián, J. Mol. Model. 23, 134 (2017)

    Article  Google Scholar 

  55. N.F. Ramsey, Phys. Rev. 91, 303 (1953)

    Article  ADS  Google Scholar 

  56. J. San Fabián, E. Díez, J.M. García de la Vega, R. Suardíaz, J. Chem. Phys. 128, 084108 (2008)

    Article  ADS  Google Scholar 

  57. S.A. Perera, H. Sekino, R.J. Bartlett, J. Chem. Phys. 101, 2186 (1994)

    Article  ADS  Google Scholar 

  58. M.E. Harding, T. Metzroth, , J. Gauss, J. Chem. Theory Comput. 4, 64 (2008)

    Article  Google Scholar 

  59. E. Nielsen, P. Jørgensen, J. Oddershede, J. Chem. Phys. 73, 6238 (1980)

    Article  ADS  Google Scholar 

  60. J. Geertsen, J. Oddershede, Chem. Phys. 90, 301 (1984)

    Article  ADS  Google Scholar 

  61. T. Enevoldsen, J. Oddershede, S.P.A. Sauer, Theor. Chim. Acta 100, 275 (1998)

    Article  Google Scholar 

  62. H. Kjær, S.P. Sauer, J. Kongsted, J. Chem. Phys. 133, 144106 (2010)

    Article  ADS  Google Scholar 

  63. O. Christiansen, H. Koch, P. Jørgensen, Chem. Phys. Lett. 243, 409 (1995)

    Article  ADS  Google Scholar 

  64. S.P.A. Sauer, J. Phys. B: At. Mol. Opt. Phys. 30, 3773 (1997)

    ADS  Google Scholar 

  65. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  66. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37, 785 (1988)

    Article  ADS  Google Scholar 

  67. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  68. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997)

    Article  ADS  Google Scholar 

  69. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  70. A. Austin, G. Petersson, M.J. Frisch, F.J. Dobe, G. Scalmani, K. Throssell, J. Chem. Theory Comput. 8, 4989 (2012)

    Article  Google Scholar 

  71. Y. Zhao, D.G. Truhlar, J. Chem. Phys. 125, 194101 (2006)

    Article  ADS  Google Scholar 

  72. Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120, 215 (2008)

    Article  Google Scholar 

  73. S. Grimme, J. Comput. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  74. J.D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008)

    Article  Google Scholar 

  75. J.D. Chai, M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)

    Article  ADS  Google Scholar 

  76. T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51 (2004)

    Article  ADS  Google Scholar 

  77. J. San Fabián, J.M. García de la Vega, E. San Fabián, J. Chem. Theory Comput. 10, 4938 (2014)

    Article  Google Scholar 

  78. J.M. García de la Vega, J. San Fabián, Mol. Phys. 113, 1924 (2015)

  79. J.C. Slater, The self-consistent field for molecular and solids, in Quantum theory of molecular and solids (McGraw-Hill, New York, 1974), Vol. 4

  80. T.H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989)

    Article  ADS  Google Scholar 

  81. D.E. Woon, T.H. Dunning, Jr., J. Chem. Phys. 103, 4572 (1995)

    Article  ADS  Google Scholar 

  82. M.J. Frisch, et al., Gaussian 09, revision D.01, Gaussian, Inc., Wallingford CT (2013)

  83. P.F. Provasi, G.A. Aucar, S.P.A. Sauer, J. Chem. Phys. 115, 1324 (2001)

    Article  ADS  Google Scholar 

  84. Dalton, a molecular electronic structure program, release dalton2013.4 (2013). Available at http://daltonprogram.org

  85. J.F. Stanton et al., ACES II is a program product of the Quantum Theory Project, University of Florida. Integral packages included are VMOL (J. Almlöf and P.R. Taylor); VPROPS (P. Taylor); ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, J. Olsen and P.R. Taylor); HONDO/GAMESS (M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.J. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis and J.A. Montgomery) (2006)

  86. M. Alei Jr., A.E. Florin, W.M. Litchman, J.F. O’Brien, J. Phys. Chem. 75, 932 (1971)

    Article  Google Scholar 

  87. R.E. Wasylishen, J.O. Friedrich, Can. J. Chem. 65, 2238 (1987)

    Article  Google Scholar 

  88. H. Fukui, K. Miura, H. Matsuda, T. Baba, J. Chem. Phys. 97, 2299 (1992)

    Article  ADS  Google Scholar 

  89. M. Pecul, J. Sadlej, T. Helgaker, Chem. Phys. Lett. 372, 476 (2003)

    Article  ADS  Google Scholar 

  90. T. Helgaker, O.B. Lutnæs, M. Jaszuński, J. Chem. Theory Comput. 3, 86 (2007)

    Article  Google Scholar 

  91. O.B. Lutnaes, T. Helgaker, M. Jaszuński, Mol. Phys. 108, 2579 (2010)

    Article  ADS  Google Scholar 

  92. E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO version 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin, USA (1993)

  93. S.J. Wilkens, W.M. Westler, J.L. Markley, F. Weinhold, J. Am. Chem. Soc. 123, 12026 (2001)

    Article  Google Scholar 

  94. J.M. García de la Vega, J. San Fabián, in High resolution NMR spectroscopy, edited by R.H. Contreras (Elsevier, 2013), Vol. 3, Chap. 6, p. 161

    Google Scholar 

  95. A.E. Shchavlev, A.N. Pankratov, V.B. Borodulin, O.A. Chaplygina, J. Phys. Chem. A 109, 10982 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2018-90118-5 .

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

San Fabián, J., Omar, S. & García de la Vega, J.M. Transmission of the spin-spin coupling constants through hydrogen bonds in ammonia clusters. Eur. Phys. J. B 91, 124 (2018). https://doi.org/10.1140/epjb/e2018-90118-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90118-5

Navigation