Skip to main content
Log in

Investigating the effects of phosphorus in a binary-phase TiAl-Ti3Al alloy by first-principles: from site preference, interfacial energetics to mechanical properties

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the site preference of phosphorus (P) and its effects on the mechanical properties of the binary phase TiAl-Ti3Al alloy using a first-principles method in combination with empirical criterions. We show that P is energetically sitting at the substitutional Al site in the Ti3Al layer of the TiAl/Ti3Al interface, which can be understood from the difference of electronegativity between P and Ti/Al. Both the cleavage energy (γ cl ) and the unstable stacking fault energy (γ us ) decrease with the presence of P, which indicates the strength of the TiAl/Ti3Al interface will be weaker and the mobility of the dislocation will be easier induced by P. Further, we demonstrate that the ratio of γ cl /γ us of TiAl/Ti3Al interface with P is 5.03, 0.19% lower than that of the clean TiAl/Ti3Al interface, suggesting that the P impurity will slightly reduce the ductility of the TiAl/Ti3Al interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Clemens, S. Mayer, Adv. Eng. Mater. 15, 191 (2013)

    Article  Google Scholar 

  2. F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U. Lorenz, Adv. Eng. Mater. 2, 699 (2000)

    Article  Google Scholar 

  3. S.E. Kulkova, A.V. Bakulin, Q.M. Huc, R. Yang, Comput. Mater. Sci. 97, 55 (2015)

    Article  Google Scholar 

  4. S.M.L. Sastry, H.A. Lipsitt, Metall. Trans. A 8, 299 (1977)

    Article  Google Scholar 

  5. A. Menand, H. Zapolsky-Tatarenko, A. Nérac-Partaix, Mater. Sci. Eng. A 250, 55 (1998)

    Article  Google Scholar 

  6. F. Appel, R. Wagner, Mater. Sci. Eng. R 22, 187 (1998)

    Article  Google Scholar 

  7. C.T. Liu, C.L. White, J.A. Horton, Acta Metall. 33, 213 (1985)

    Article  Google Scholar 

  8. J.C.M. Li, in Microstructure and properties of materials (World Scientific, Singapore, 1996), Vol. 1

  9. G. Schumacher, F. Dettenwanger, M. Schutze, U. Hornauer, E. Richter, E. Wieser, W. Moller, Intermetallics 7, 1113 (1999)

    Article  Google Scholar 

  10. S.Y. Brou, G. Bonnet, J.L. Grosseau-Poussard, Surf. Coat. Tech. 203, 1138 (2009)

    Article  Google Scholar 

  11. J. Zhou, J.T. Guo, Mater. Sci. Eng. A 360, 140 (2003)

    Article  Google Scholar 

  12. J.T. Guo, J. Zhou, J. Alloys Compounds 352, 255 (2003)

    Article  Google Scholar 

  13. H.T. Angus, Cast Iron: Physical and Engineering Properties (Butterworths, London, 1960)

  14. R.W. Heine, C.R. Loper, P.C. Rosental, Principles of Metal Casting (McGraw Hill, 1967)

  15. BCIRA, in The effects of the main five elements in cast irons (BCIRA Broadsheet, 1989), p. 291

  16. M. Aksoy, V. Kuzucu, H. Turhan, J. Mater. Process. Technol. 124, 113 (2002)

    Article  Google Scholar 

  17. G. Kresse, J. Hafner, Phys. Rev. B 47, 558(R) (1993)

    Article  ADS  Google Scholar 

  18. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  19. D. Vanderbilt, Phys. Rev. B 41, 7892(R) (1990)

    Article  ADS  Google Scholar 

  20. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  21. H.B. Zhou, Y. Wei, Y.L. Liu, Y. Zhang, G.H. Lu, Model. Simul. Mater. Sci. Eng. 18, 015007 (2010)

    Article  ADS  Google Scholar 

  22. Y. Wei, Y. Zhang, G.H. Lu, H.B. Xu. Int. J. Mod. Phys. B 2, 2749 (2010)

    Article  ADS  Google Scholar 

  23. E.S.K. Menon, A.G. Fox, R. Mahapatra, J. Mater. Sci. Lett. 1, 1231 (1996)

    Article  Google Scholar 

  24. W.B. Pearson, A handbook of lattice spacing and structure of metals and alloys (Pergamon, Oxford, 1987)

  25. H. Inui, A. Nakamura, M.H. Oh, M. Yamaguchi, Ultramicros. 39, 268 (1991)

    Article  Google Scholar 

  26. F.D. Fischer, T. Waitz, C. Scheu, L. Cha, G. Dehme, Antretter, Intermetallics 18, 509 (2010)

    Article  Google Scholar 

  27. Y. Koizumi, A. Sugihara, T. suchiya, Y. Hminamino, S. Fujimoto, H. Yasuda, Acta. Mater. 58, 2876 (2010)

    Article  Google Scholar 

  28. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  29. https://en.wikipedia.org/wiki/Atomic˙radii˙of˙the˙elements˙(data˙page)

  30. Z. Liu, T. Narita, Intermetallics 11, 795 (2003)

    Article  Google Scholar 

  31. H.R. Gong, Intermetallics 17, 562 (2009)

    Article  Google Scholar 

  32. V. Vitek, Philos. Mag. 18, 773 (1968)

    Article  ADS  Google Scholar 

  33. J.W. Christian, V. Vitek, Rep. Prog. Phys. 33, 307 (1970)

    Article  ADS  Google Scholar 

  34. M.S. Duesbery, V. Vitek, Acta. Mater. 46, 1481 (1998)

    Article  Google Scholar 

  35. X.T. Xu, F.L. Tang, H.T. Xue, W.Y. Yu, L. Zhu, Z.Y. Rui. Comput. Mater. Sci. 107, 58 (2015)

    Article  Google Scholar 

  36. J.R. Rice, J. Mech. Phys. Solids 40, 239 (1992)

    Article  ADS  Google Scholar 

  37. C.L. Fu, J. Mater. Res. 5, 971 (1990)

    Article  ADS  Google Scholar 

  38. G. Lu, D. Orlikowski, I. Park, O. Politano, E. Kaxiras, Phys. Rev. B 65, 064102 (2002)

    Article  ADS  Google Scholar 

  39. M. Yuasa, D. Nishihara, M. Mabuchi, Y. Chino, J. Phys.: Condens. Matter 24, 085701 (2012)

    ADS  Google Scholar 

  40. Y. Wei, Y. Zhang, H.B. Zhou, G.H. Lu, H.B. Xu, Intermetallics 22, 41 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bo Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZZ., Wei, Y., Zhou, HB. et al. Investigating the effects of phosphorus in a binary-phase TiAl-Ti3Al alloy by first-principles: from site preference, interfacial energetics to mechanical properties. Eur. Phys. J. B 89, 280 (2016). https://doi.org/10.1140/epjb/e2016-70326-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70326-9

Keywords

Navigation