Skip to main content

Advertisement

Log in

Theoretical Prediction of Transition Metal Alloying Effects on the Lightweight TiAl Intermetallic

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The structural, mechanical properties and Debye temperature of doped intermetallic Ti7Al8X (X = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, W) have been investigated by employing the pseudo-potential plane-wave approach based on density functional theory, within the generalized gradient approximation (GGA) function. The calculated lattice constants of TiAl are found to be within 1 pct error, compared with the experimental values. The stability of calculated structures of Ti7Al8X at 0 GPa is measured by studying mechanical stability conditions and formation energy. All the single crystals are proved to be elastically anisotropic. The Young’s modulus as a function of crystal orientations has been systematically investigated. Mechanical properties of polycrystals are computed from values of shear modulus (G), bulk modulus (B), Young’s modulus (E), Poisson’s ratio (υ), and microhardness parameter (H) for Ti7Al8X. It is indicated that addition of alloying elements reduces the brittleness and microhardness of TiAl intermetallic. Debye temperature of TiAl calculated using elastic data of the present work is found to be influenced by the addition of alloying elements, which is further confirmed by the phonon dispersions of Ti8Al8, Ti7Al8Zr, and Ti7Al8Hf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Appel, R. Wagner, Mater. Sci. Eng. R 22 (1998) 187-268.

    Article  Google Scholar 

  2. Y.W. Kim, JOM. 46 (1994) 30-39.

    Article  Google Scholar 

  3. H. Clemens, H. Kestler, Adv. Eng. Mater. 2 (2000) 551-570.

    Article  Google Scholar 

  4. N.P. Lavery, D.J. Jarvis, D. Voss, Intermetallics. 19 (2011) 787-792.

    Article  Google Scholar 

  5. X. Wu, Intermetallics. 14 (2006) 1114-1122.

    Article  Google Scholar 

  6. K. Gebauer, Intermetallics. 14 (2006) 355-60.

    Article  Google Scholar 

  7. H. Clemens, W. Smarsly, Adv. Mater. Res. 278 (2011) 551-556.

    Article  Google Scholar 

  8. T. Noda, Intermetallics. 6 (1998) 709-713.

    Article  Google Scholar 

  9. S. Djanarthany, J.C. Viala, J. Bouix, Mater. Chem. Phys. 72 (2001) 301-319.

    Article  Google Scholar 

  10. Y. Mizuhara, K. Hashimoto, N. Masahashi, Intermetallics. 11 (2003) 807-816.

    Article  Google Scholar 

  11. C. Zhou, Y. Yang, S. Gong, H. Xu, Mater. Sci. Eng. A 307 (2001) 182-187.

    Article  Google Scholar 

  12. A. Brotzu, F. Felli, D. Pilone, Frattura e. Integrita Strutturale. 22 (2012) 20.

    Google Scholar 

  13. D. Raabe, B. Sander, M. Friák, D. Ma, J. Neugebauer, Acta Mater. 55 (2007) 4475-4487.

    Article  Google Scholar 

  14. M. Friák, W.A. Counts, D. Ma, B. Sander, D. Holec, D. Raabe, J. Neugebauer, Materials. 5 (2012) 1853-1872.

    Article  Google Scholar 

  15. E. Mohandas, P. Beaven, Scripta Mater. 25 (1991) 2023-2027.

    Article  Google Scholar 

  16. R. Holmestad, J. Zuo, J. Spence, R. Hoiert, Z. Horita, Philos. Mag. A 72 (1995) 579-601.

    Article  Google Scholar 

  17. Y. Song, R. Yang, D. Li, Z. Hu, Z. Guo, Intermetallics. 8 (2000) 563-568.

    Article  Google Scholar 

  18. L. Chen, Journal of Changsha Aeronautical Vocational and Technical College. 8 (2008) 43.

    Google Scholar 

  19. H.B. Zhou, Y. Zhang, Y.L. Liu, M. Kohyama, P.G. Yin, G.H. Lu, J.Phys.:Condens.Matter. 21 (2009) 175407.

    Google Scholar 

  20. M. Kabir, L. Chernova, M. Bartsch, Acta Mater. 58 (2010) 5834-5847.

    Article  Google Scholar 

  21. S.C. Huang, E.L. Hall, Metall. Trans. A 22 (1991) 427-439.

    Article  Google Scholar 

  22. T. Novoselova, S. Malinov, W. Sha, A. Zhecheva, Mater. Sci. Eng. A 371 (2004) 103-112.

    Article  Google Scholar 

  23. M. Segall, P.J. Lindan, M. Probert, C. Pickard, P. Hasnip, S. Clark, M. Payne, J.Phys.:Condens.Matter. 14 (2002) 2717.

    Google Scholar 

  24. D. Vanderbilt, Phys. Rev. B 41 (1990) 7892.

    Article  Google Scholar 

  25. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

    Article  Google Scholar 

  26. B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen, J. Comput. Phys. 131 (1997) 233-240.

    Article  Google Scholar 

  27. X. Gonze, Phys. Rev. B 55 (1997) 10337.

    Article  Google Scholar 

  28. B. Karki, L. Stixrude, S. Clark, M. Warren, G. Ackland, J. Crain, Am. Mineral. 82 (1997) 51-60.

    Article  Google Scholar 

  29. J. Ning, X. Zhang, X. Huang, N. Sun, M. Ma, R. Liu, Intermetallics. 54 (2014) 7-14.

    Article  Google Scholar 

  30. P. Duwez, J.L. Taylor, Crystal Structure of TiAl, Pasadena CA, Pasadena, 1951.

    Google Scholar 

  31. S. Sridharan, H. Nowotny, Z. Metallkd. 74 (1983) 468-472.

    Google Scholar 

  32. O. Beckstein, J. Klepeis, G. Hart, O. Pankratov, Phys. Rev. B 63 (2001) 134112.

    Article  Google Scholar 

  33. D.V. Suetin, I.R. Shein, A.L. Ivanovskii, Physica B: Condens. Matter. 404 (2009) 1887-1891.

    Article  Google Scholar 

  34. Y. Hao, D. Xu, Y. Cui, R. Yang, D. Li, Acta Mater. 47 (1999) 1129-1139.

    Article  Google Scholar 

  35. A. Ponchel, G. Hug, M. Jaouen, Ultramicroscopy. 86 (2001) 265-272.

    Article  Google Scholar 

  36. S.I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 101 (2008) 055504.

    Article  Google Scholar 

  37. C. Fu, M. Yoo, Phil. Mag. Lett. 62 (1990) 159-165.

    Article  Google Scholar 

  38. J.F. Nye, Physical properties of crystals: their representation by tensors and matrices, Oxford University Press, Oxford, 1985.

    Google Scholar 

  39. A. Reuss, Z. Angew. Math. Mech. 9 (1929) 49-58.

    Google Scholar 

  40. R. Hill, Proc. Phys. Soc. A 65 (1952) 349.

    Article  Google Scholar 

  41. W. Voigt, Lehrburch der Kristallphysik, Teubner, Leipzig, 1982.

    Google Scholar 

  42. D. Nguyen-Manh, D. Pettifor, Intermetallics. 7 (1999) 1095-1106.

    Article  Google Scholar 

  43. Y.Z. Zhang, Intermetallic structural materials, National Deference Industry Press, Beijing, 2001.

    Google Scholar 

  44. K. Tanaka, M. Koiwa, Intermetallics. 4 (1996) S29-S39.

    Article  Google Scholar 

  45. I. Frantsevich, F. Voronov, S. Bokuta, I. Frantsevich, Elastic Constants and Elastic Moduli of Metals and Insulators, Naukova Dumka, Kiev. (1983) 60-180.

    Google Scholar 

  46. S. Pugh, Philosophical Magazine. 45 (1954) 823-843.

    Article  Google Scholar 

  47. J.Q. He, Y. Wang, M.F. Yan, Y. Yang, L. Wang, Comp. Mater. Sci. 50 (2010) 545-549.

    Article  Google Scholar 

  48. W. Feng, S. Cui, H. Hu, P. Feng, Z. Zheng, Y. Guo, Z. Gong, Physica B: Condens. Matter. 405 (2010) 4294-4298.

    Article  Google Scholar 

  49. D.J. Larson, C.T. Liu, M.K. Miller, Mater. Sci. Eng. A 270 (1999) 1-8.

    Article  Google Scholar 

  50. J.S. Kim, Y.H. Lee, Y.W. Kim, C.S. Lee, Mater. Sci. Forum. 539-543 (2007) 1531-1536.

    Article  Google Scholar 

  51. Y. Song, D. Xu, R. Yang, D. Li, Z. Hu, Intermetallics. 6 (1998) 157-165.

    Article  Google Scholar 

  52. M. LORETTO, Acta Metal. Mater. 42 (1994) 2913-2919.

    Article  Google Scholar 

  53. S. Dymek, M. Wrobel, M. Blicharski, Z. Witczak, Arch. Metall. Mater. 51 (2006) 97-102.

    Google Scholar 

  54. W. Soboyejo, C. Mercer, Mater. Manuf. Process. 11 (1996) 431-448.

    Article  Google Scholar 

  55. S.C. Huang, Structural Intermetallics, TMS, Warrendale, 1993.

    Google Scholar 

  56. M.H. Loretto, Z. Wu, M.Q. Chu, H. Saage, D. Hu, M.M. Attallah, Intermetallics. 23 (2012) 1-11.

    Article  Google Scholar 

  57. K. Gschneidner, A. Russell, A. Pecharsky, J. Morris, Z. Zhang, T. Lograsso, D. Hsu, C.C. Lo, Y. Ye, A. Slager, Nat. Mater. 2 (2003) 587-591.

    Article  Google Scholar 

  58. K. Kim, W.R. Lambrecht, B. Segall, Phys. Rev. B 50 (1994) 1502.

    Article  Google Scholar 

  59. L. Kleinman, Phys. Rev. 128 (1962) 2614.

    Article  Google Scholar 

  60. E.S. Yousef, A. El-Adawy, N. El-KheshKhany, Solid State Commun. 139 (2006) 108-113.

    Article  Google Scholar 

  61. O.L. Anderson, J. Phys. Chem. Solids. 24 (1963) 909-917.

    Article  Google Scholar 

  62. E. Schreiber, O.L. Anderson, N. Soga, J. Robinson, Elastic constants and their measurement, McGraw-Hill, New York, 1973.

    Google Scholar 

  63. G. Grimvall, Thermophysical Properties of Materials, Elsevier, Amsterdam 1999.

    Google Scholar 

  64. H. Fu, Z. Zhao, W. Liu, F. Peng, T. Gao, X. Cheng, Intermetallics. 18 (2010) 761-766.

    Article  Google Scholar 

  65. S.L. Shang, Y. Wang, D. Kim, Z.K. Liu, Comp. Mater. Sci. 47 (2010) 1040-1048.

    Article  Google Scholar 

Download references

Acknowledgments

This research work was supported by the National Natural Science Foundation of China (51161002, 51361002), the Program for New Century Excellent Talents in University of China (NCET-12-0650), and the Science and Technology Development Project of Guangxi Department of Education (2013ZL010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhong Zhan.

Additional information

Manuscript submitted December 3, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Tang, C. & Zhan, Y. Theoretical Prediction of Transition Metal Alloying Effects on the Lightweight TiAl Intermetallic. Metall Mater Trans A 47, 1451–1459 (2016). https://doi.org/10.1007/s11661-015-3321-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3321-6

Keywords

Navigation