Skip to main content
Log in

Landau levels in graphene in the presence of emergent gravity

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We consider graphene in the presence of external magnetic field and elastic deformations that cause emergent magnetic field. The total magnetic field results in the appearance of Landau levels in the spectrum of quasiparticles. In addition, the quasiparticles in graphene experience the emergent gravity. We consider the particular choice of elastic deformation, which gives constant emergent magnetic field and vanishing torsion. Emergent gravity may be considered as perturbation. We demonstrate that the corresponding first order approximation affects the energies of the Landau levels only through the constant renormalization of Fermi velocity. The degeneracy of each Landau level receives correction, which depends essentially on the geometry of the sample. There is the limiting case of the considered elastic deformation, that corresponds to the uniformly stretched graphene. In this case in the presence of the external magnetic field the degeneracies of the Landau levels remain unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge Univ. Press, Cambridge, 2012)

  2. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, in A Course of Theoretical Physics (Pergamon Press, 1970), Vol. 7

  3. B.A. Bilby, E. Smith, Proc. Roy. Soc. Sect. A 231, 263 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  4. B.A. Bilby, E. Smith, Proc. Roy. Soc. Sect. A 236, 481 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  5. E. Kröner, Arch. Rational Mech. Anal. 4, 18 (1960)

    Google Scholar 

  6. I.E. Dzyaloshinskii, G.E. Volovick, Ann. Phys. 125, 67 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Kleinert, J. Zaanen, Phys. Lett. A 324, 361 (2004)

    Article  ADS  Google Scholar 

  8. M.A.H. Vozmediano, M.I. Katsnelson, F. Guinea, Phys. Rep. 496, 109 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. F. de Juan, A. Cortijo, M.A.H. Vozmediano, Nucl. Phys. B 828, 625 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Mesaros, D. Sadri, J. Zaanen, Phys. Rev. B 82, 073405 (2010)

    Article  ADS  Google Scholar 

  11. C.D. Froggatt, H.B. Nielsen, Origin of Symmetry (World Scientific, Singapore, 1991)

  12. G.E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003)

  13. P. Hořava, Phys. Rev. Lett. 95, 016405 (2005)

    Article  ADS  Google Scholar 

  14. G.E. Volovik, M.A. Zubkov, Ann. Phys. 340, 352 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. G.E. Volovik, M.A. Zubkov, Emergent gravity in graphene, International Moscow Phenomenology Workshop, July 21, 2013–July 25, 2013, arXiv:1308.2249

  16. M. Oliva-Leyva, G.G. Naumis, Phys. Rev. B 88, 085430 (2013)

    Article  ADS  Google Scholar 

  17. M. Oliva-Leyva, G.G. Naumis, Phys. Lett. A 379, 2645 (2015)

    Article  ADS  Google Scholar 

  18. M.A.H. Vozmediano, M.I. Katsnelson, F. Guinea, arXiv:1003.5179v2 (2010)

  19. Hidekatsu Suzuura, Tsuneya Ando, Phys. Rev. B 65, 235412 (2002)

  20. F. Guinea, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, Phys. Rev. B 81, 035408 (2010)

    Article  ADS  Google Scholar 

  21. F. Guinea, A.K. Geim, M.I. Katsnelson Nat. Phys. 6, 30 (2010)

    Article  Google Scholar 

  22. S. Schwarz, Properties of Graphene in an External Magnetic Field, Ph.D. thesis, University of Bern, 2011

  23. M.O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011)

    Article  ADS  Google Scholar 

  24. F. Guinea, A.K. Geim, M.I. Katsnelson, Phys. Rev. B 77, 075422 (2008)

    Article  ADS  Google Scholar 

  25. F. Guinea, Baruch Horovitz, P. Le Doussal, Phys. Rev. B 77, 205421 (2008)

  26. B. Roy, Z.-X. Hu, K. Yang, Phys. Rev. B. 87, 121408 (2013)

    Article  ADS  Google Scholar 

  27. G.E. Volovik, M.A. Zubkov, Ann. Phys. 356, 255 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. The Atiyah-Patodi-Singer Index Theorem (Research Notes in Mathematics), edited by R. Melrose, A.K. Peters (CRC Press, 1993)

  29. M.M. Ansourian, Phys. Lett. B 70, 301 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  30. T. Kimura, J. High Energy Phys. 0708, 048 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Zubkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaidukov, Z., Zubkov, M. Landau levels in graphene in the presence of emergent gravity. Eur. Phys. J. B 89, 213 (2016). https://doi.org/10.1140/epjb/e2016-70182-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70182-7

Keywords

Navigation