Skip to main content
Log in

Hilbert transform evaluation for electron-phonon self-energies

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The electron tunneling current through nanostructures is considered in the presence of the electron-phonon interactions. In the Keldysh nonequilibrium formalism, the lesser, greater, advanced and retarded self-energies components are expressed by means of appropriate Langreth rules. We discuss the key role played by the entailed Hilbert transforms, and provide an analytic way for their evaluation. Particular attention is given to the current-conserving lowest-order-expansion for the treament of the electron-phonon interaction; by means of an appropriate elaboration of the analytic properties and pole structure of the Green’s functions and of the Fermi functions, we arrive at a surprising simple, elegant, fully analytic and easy-to-use expression of the Hilbert transforms and involved integrals in the energy domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.K. Ferry, S.M. Goodnick, J. Bird, Transport in Nanostructures, 2nd edn. (Cambridge University Press, New York, 2009)

  2. J.C. Cuevas, E. Scheer, Molecular Electronics (World Scientific, New Jersey, 2010)

  3. M. Paulsson, T. Frederiksen, M. Brandbyge, Phys. Rev. B 72, 201101 (2005)

    Article  ADS  Google Scholar 

  4. J.K. Viljas, J.C. Cuevas, F. Pauly, M. Häfner, Phys. Rev. B 72, 245415 (2005)

    Article  ADS  Google Scholar 

  5. H. Mera, M. Lannoo, C. Li, N. Cavassilas, M. Bescond, Phys. Rev. B 86, 161404 (2012)

    Article  ADS  Google Scholar 

  6. J.-T. Lü, R.B. Christensen, G. Foti, T. Frederiksen, T. Gunst, M. Brandbyge, Phys. Rev. B 89, 081405 (2014)

    Article  ADS  Google Scholar 

  7. P. Hyldgaard, S. Hershfield, J.H. Davies, J.W. Wilkins, Ann. Phys. 236, 1 (1994)

    Article  ADS  Google Scholar 

  8. A. Cresti, G. Grosso, G. Pastori Parravicini, J. Phys.: Condens. Matter 18, 10059 (2006)

    ADS  Google Scholar 

  9. T. Shimazaki, Y. Asai, Phys. Rev. B 77, 115428 (2008)

    Article  ADS  Google Scholar 

  10. Y. Asai, Phys. Rev. B 78, 045434 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Cresti, G. Grosso, G. Pastori Parravicini, Eur. Phys. J. B 53, 537 (2006)

    Article  ADS  Google Scholar 

  12. A. Cresti, G. Pastori Parravicini, Phys. Rev. B 78, 115313 (2008)

    Article  ADS  Google Scholar 

  13. J.-S. Wang, J. Wang, J.T. Lü, Eur. Phys. J. B 62, 381 (2008)

    Article  ADS  Google Scholar 

  14. R. Rhyner, M. Luisier, Phys. Rev. B 89, 235311 (2014)

    Article  ADS  Google Scholar 

  15. J. Mabillard, T. Can, D.K. Morr, New J. Phys. 16, 013054 (2014)

    Article  ADS  Google Scholar 

  16. K. Balzer and M. Bonitz, Nonequilibrium Green’s Functions Approach to Inhomogeneous Systems (Springer, Heidelberg, 2013)

  17. T. Stegman, M. Zilly, D. Ujsághy, D.E. Wolf, Eur. Phys. J. B 85, 264 (2012)

    Article  ADS  Google Scholar 

  18. A.R. Hernández, C.H. Lewenkopf, Eur. Phys. J. B 86, 131 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Grosso, G. Pastori Parravicini, Solid State Physics, 2nd edn. (Elsevier, Academic Press, Oxford, 2014)

  20. G.D. Mahan, Many-Particle Physics, 3rd edn. (Kluwer, New York, 2000)

  21. T. Ozaki, K. Nishio, H. Kino, Phys. Rev. B 81, 035116 (2010)

    Article  ADS  Google Scholar 

  22. C. Karrasch, V. Meden, K. Schönhammer, Phys. Rev. B 82, 125114 (2010)

    Article  ADS  Google Scholar 

  23. J. Hu, R.-X. Xu, Y. Yan, J. Chem. Phys. 133, 101106 (2010)

    Article  ADS  Google Scholar 

  24. A. Croy, U. Saalmann, Phys. Rev. B 80, 073102 (2009)

    Article  ADS  Google Scholar 

  25. A. Croy, U. Saalmann, Phys. Rev. B 80, 245311 (2009)

    Article  ADS  Google Scholar 

  26. L. Lin, J. Lu, R. Car, E. Weinan, Phys. Rev. B 79, 115133 (2009)

    Article  ADS  Google Scholar 

  27. L. Lin, M. Chen, C. Yang, L. He, J. Phys.: Condens. Matter 25, 295501 (2013)

    Google Scholar 

  28. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1972)

  29. F.W. King, in Hilbert Transforms (Cambridge University Press, Cambridge, 2009), Vols. 1 and 2

  30. J.A.C. Weideman, Math. Comp. 64, 745 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. T. Frederiksen, M. Paulsson, M. Brandbyge, A.-P. Jauho, Phys. Rev. B 75, 205413 (2007)

    Article  ADS  Google Scholar 

  32. D. Cvijović, J. Phys. A 41, 455205 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  33. F. Haupt, T. Novotný, W. Belzig, Phys. Rev. B 82, 165441 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Bevilacqua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bevilacqua, G., Menichetti, G. & Parravicini, G. Hilbert transform evaluation for electron-phonon self-energies. Eur. Phys. J. B 89, 3 (2016). https://doi.org/10.1140/epjb/e2015-60730-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60730-0

Keywords

Navigation