Skip to main content
Log in

Time series analysis of temporal networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012)

    Article  ADS  Google Scholar 

  2. J. Tang, S. Scellato, M. Musolesi, C. Mascolo, V. Latora, Phys. Rev. E 81, 055101(R) (2010)

    Article  ADS  Google Scholar 

  3. J. Stehlé, A. Barrat, G. Bianconi, Phys. Rev. E 81, 035101 (2010)

    Article  ADS  Google Scholar 

  4. S. Sur, N. Ganguly, A. Mukherjee, Physica A 420, 98 (2014)

    Article  ADS  Google Scholar 

  5. P. Basu, A. Bar-Noy, R. Ramanathan, M.P. Johnson, CoRR abs/1012.0260 (2010)

  6. N. Perra, B. Gonçalves, R. Pastor-Satorras, A. Vespignani, Sci. Rep. 2, 469 (2012)

    Article  ADS  Google Scholar 

  7. M. Starnini, A. Baronchelli, A. Barrat, R. Pastor-Satorras, Phys. Rev. E 85, 056115 (2012)

    Article  ADS  Google Scholar 

  8. A. Vespignani, Nat. Phys. 8, 32 (2011)

    Article  Google Scholar 

  9. S.A. Hill, D. Braha, Phys. Rev. E 82, 046105 (2010)

    Article  ADS  Google Scholar 

  10. S. Hanneke, W. Fu, E.P. Xing, Electron. J. Statist. 4, 585 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. A.L. Barabasi, Nature 435, 207 (2005)

    Article  ADS  Google Scholar 

  12. K. Zhao, J. Stehlé, G. Bianconi, A. Barrat, Phys. Rev. E 83, 056109 (2011)

    Article  ADS  Google Scholar 

  13. J. Tang, M. Musolesi, C. Mascolo, V. Latora, Temporal distance metrics for social network analysis, in Proceedings of the 2nd ACM workshop on Online social networks (ACM, 2009), pp. 31–36

  14. R.K. Pan, J. Saramäki, Phys. Rev. E 84, 016105 (2011)

    Article  ADS  Google Scholar 

  15. J.D. Hamilton, Econometrica 57, 357 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. B. O’Connor, R. Balasubramanyan, B.R. Routledge, N.A. Smith, ICWSM 11, 122 (2010)

    Google Scholar 

  17. A. Scherrer, P. Borgnat, E. Fleury, J.L. Guillaume, C. Robardet, Comput. Networks 52, 2842 (2008)

    Article  MATH  Google Scholar 

  18. S. Hempel, A. Koseska, J. Kurths, Z. Nikoloski, Phys. Rev. Lett. 107, 054101 (2011)

    Article  ADS  Google Scholar 

  19. V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre, J. Statist. Mech. 2008, P10008 (2008)

    Article  Google Scholar 

  20. M.E. Newman, Proc. Natl. Acad. Sci. 103, 8577 (2006)

    Article  ADS  Google Scholar 

  21. J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, A. Chaintreau, CRAWDAD dataset cambridge/haggle (v. 2009-05-29), http://crawdad.org/cambridge/haggle/20090529, doi:10.15783/C70011, May 2009

  22. A.-K. Pietilainen, C. Diot, CRAWDAD dataset thlab/ sigcomm2009 (v. 2012-07-15), traceset: mobiclique, http://crawdad.org/thlab/sigcomm2009/20120715/mobiclique, doi:10.15783/C70P42, Jul 2012

  23. J. Fournet, A. Barrat, PLoS ONE 9, e107878 (2014)

    Article  ADS  Google Scholar 

  24. P. Vanhems, A. Barrat, C. Cattuto, J.F. Pinton, N. Khanafer, C. Régis, B.A. Kim, B. Comte, N. Voirin, PloS ONE 8, e73970 (2013)

    Article  ADS  Google Scholar 

  25. D. Kwiatkowski, P.C. Phillips, P. Schmidt, Y. Shin, J. Econ. 54, 159 (1992)

    Article  MATH  Google Scholar 

  26. D.A. Dickey, W.A. Fuller, J. Am. Stat. Assoc. 74, 427 (1979)

    MATH  MathSciNet  Google Scholar 

  27. C. Chatfield, The Analysis of Time Series: an Introduction (CRC Press, 2013)

  28. G.E. Box, G.M. Jenkins, G.C. Reinsel, in Time series analysis: forecasting and control (John Wiley & Sons, 2011), Vol. 734

  29. S. Niwattanakul, J. Singthongchai, E. Naenudorn, S. Wanapu, Using of Jaccard coefficient for keywords similarity, in Proceedings of the International MultiConference of Engineers and Computer Scientists (2013), Vol. 1, p. 6

  30. M. Bawa, T. Condie, P. Ganesan, LSH forest: self-tuning indexes for similarity search, in Proceedings of the 14th international conference on World Wide Web (ACM, 2005), pp. 651–660

  31. L. Lü, T. Zhou, Physica A 390, 1150 (2011)

    Article  ADS  Google Scholar 

  32. L. Lü, C.H. Jin, T. Zhou, Phys. Rev. E 80, 046122 (2009)

    Article  ADS  Google Scholar 

  33. Y. Pan, D.H. Li, J.G. Liu, J.Z. Liang, Physica A 389, 2849 (2010)

    Article  ADS  Google Scholar 

  34. S. Trajanovski, S. Scellato, I. Leontiadis, Phys. Rev. E 85, 066105 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandipan Sikdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikdar, S., Ganguly, N. & Mukherjee, A. Time series analysis of temporal networks. Eur. Phys. J. B 89, 11 (2016). https://doi.org/10.1140/epjb/e2015-60654-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60654-7

Keywords

Navigation