Skip to main content

Advertisement

Log in

First principles calculation of CH4 decomposition on nickel (111) surface

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The mechanism of the CH4 decomposition on the nickel (111) surface is investigated by first principles calculations. The activation energy of each reaction is calculated using nudged elastic band method. The activation energy of hydrogen dissociation from a CH2 fragment is found much lower than the one of a CH3 fragment. This result is consistent with the fact, observed in our previous molecular dynamics (MD) simulations, that the CH3 fragment is dissociated into a CH fragment and two hydrogen atoms spontaneously. The effects of finite temperature at 1500 K on the decomposition reaction of a CH4 molecule and its fragments are also investigated using constraint MD method. While the temperature effects are barely visible in CH4 and CH2 dissociation processes, they reduce the activation free energy of hydrogen dissociation from CH3 and CH fragments largely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Barelli, G. Bidini, F. Gallorini, S. Servili, Energy 33, 554 (2008)

    Article  Google Scholar 

  2. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.D. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2009)

    Article  ADS  Google Scholar 

  3. M.G. Rybin, A.S. Pozharov, E.D. Obraztova, Phys. Stat. Sol. C 7, 2785 (2010)

    Article  Google Scholar 

  4. Y. Zhang, L. Gomez, F.N. Ishikawa, A. Madaria, K. Ryu, C. Wang, A. Badmaev, C. Zhou, J. Phys. Chem. Lett. 1, 3101 (2010)

    Article  Google Scholar 

  5. M. Eizenberg, J.M. Blakely, Surf. Sci. 82, 228 (1979)

    Article  ADS  Google Scholar 

  6. V.K. Portnoi, A.V. Leonov, S.N. Mudretsova, S.A. Fedotov, Phys. Met. Metallogr. 109, 153 (2010)

    Article  ADS  Google Scholar 

  7. T.P. Beebe Jr., D.W. Goodman, B.D. Kay, J.T. Yates Jr., J. Chem. Phys. 87, 2305 (1987)

    Article  ADS  Google Scholar 

  8. M.B. Lee, Q.Y. Yang, S.T. Ceyer, J. Chem. Phys. 87, 2724 (1987)

    Article  ADS  Google Scholar 

  9. H. Yang, J.L. Whitten, J. Chem. Phys. 96, 5529 (1992)

    Article  ADS  Google Scholar 

  10. A.P.J. Jansen, H. Burghgraef, Surf. Sci. 344, 149 (1995)

    Article  ADS  Google Scholar 

  11. P. Kratzer, B. Hammer, J.K. Nørskov, J. Chem. Phys. 105, 5595 (1996)

    Article  ADS  Google Scholar 

  12. M.S. Liao, C.T. Au, C.F. Ng, Chem. Phys. Lett. 272, 445 (1997)

    Article  ADS  Google Scholar 

  13. R.M. Watwe, H.S. Bengaard, J.R. Rostrup-Nielsen, J.A. Dumesic, J.K. Nørskov, J. Catal. 189, 16 (2000)

    Article  Google Scholar 

  14. F. Abild-Pedersen, O. Lytken, J. Engbæk, G. Nielsen, I. Chorkendorff, J.K. Nørskov, Surf. Sci. 590, 127 (2005)

    Article  ADS  Google Scholar 

  15. S. Nave, B. Jackson, J. Chem. Phys. 127, 224702(1) (2007)

  16. S. Nave, B. Jackson, Phys. Rev. Lett. 98, 173003(1) (2007)

    Article  ADS  Google Scholar 

  17. S. Nave, B. Jackson, J. Chem. Phys. 130, 054701(1) (2009)

    Article  ADS  Google Scholar 

  18. S. Nave, A.K. Tiwari, B. Jackson, J. Chem. Phys. 132, 054705(1) (2010)

    Article  ADS  Google Scholar 

  19. Y. Shibuta, R. Arifin, K. Shimamura, T. Oguri, F. Shimojo, S. Yamaguchi, Chem. Phys. Lett. 565, 92 (2013)

    Article  ADS  Google Scholar 

  20. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  21. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhov, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  23. G. Kresse, J. Hafner, Phys. Rev. B. 49, 14251 (1994)

    Article  ADS  Google Scholar 

  24. F. Shimojo, R.K. Kalia, A. Nakano, P. Vashishta, Comput. Phys. Commun. 140, 303 (2001)

    Article  MATH  ADS  Google Scholar 

  25. CRC Handbook of Chemistry and Physics, edited by D.R. Lide, 76th edn. (CRC Press, New York, 1996)

  26. S.J. Grimme, Comp. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  27. H. Jónsson, G. Mills, K.W. Jacobsen, in Nudged elastic band method for finding minimum energy paths of transition (World Scientific, Singapore, 1998), pp. 385–404

  28. G. Henkelman, H. Jónsson, J. Chem. Phys. 113, 9978 (2000)

    Article  ADS  Google Scholar 

  29. K.C. Hass, W.F. Schneider, A. Curioni, W. Andreoni, Science 282, 265 (1998)

    Article  ADS  Google Scholar 

  30. S. Nosé, Mol. Phys. 52, 255 (1984)

    Article  ADS  Google Scholar 

  31. W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  32. M. Tuckerman, B.J. Berne, G.J. Martyna, J. Chem. Phys. 97, 1990 (1992)

    Article  ADS  Google Scholar 

  33. A. Curioni, M. Sprik, W. Andreoni, H. Schiffer, J. Hutter, M. Parrinello, J. Am. Chem. Soc. 119, 7218 (1997)

    Article  Google Scholar 

  34. A. Michaelides, P. Hu, J. Chem. Phys. 112, 6006 (2000)

    Article  ADS  Google Scholar 

  35. F. Che, R. Zhang, A.J. Hensley, S. Ha, J.-S and McEwen, Phys. Chem. Chem. Phys. 16, 2399 (2014)

  36. H. Liu, R. Yan, R. Zhang, B. Wang, K.J. Xie, Nat. Gas. Chem. 20, 611 (2011)

    Article  Google Scholar 

  37. J.E. Mueller, A.C.T van Duin, W.A. Goddard III, J. Phys. Chem. C 113, 20290 (2009)

    Article  Google Scholar 

  38. M.F. Haroun, P.S. Moussounda, P. Légaré, J.-C. Parlebas, Eur. Phys. J. B 78, 353 (2010)

    Article  ADS  Google Scholar 

  39. G. Kresse, D. Joubert, Surf. Sci. 459, 287 (2000)

    Article  ADS  Google Scholar 

  40. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  41. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 48, 4978 (1993)

    Article  ADS  Google Scholar 

  42. J.P. Perdew, in Electronic Structure of Solids ’91, edited by P. Ziesche, H. Eschrig (Akademie-Verlag, Berlin, 1991), pp. 11–20

  43. G.W. Watson, R.P.K. Wells, D.J. Willock, G.J. Hutchings, J. Phys. Chem. B 105, 4889 (2001)

    Article  Google Scholar 

  44. E.J. Shustorovich, Adv. Catal. 37, 101 (1990)

    Google Scholar 

  45. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  46. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  47. D.R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)

    Article  ADS  Google Scholar 

  48. R. Bisson, M. Sacchi, T.T. Dang, B. Yoder, P. Maroni, R.D. Beck, J. Phys. Chem. A 111, 12679 (2007)

    Article  Google Scholar 

  49. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)

    Article  ADS  Google Scholar 

  50. F. Shimojo, A. Nakano, R.K. Kalia, P. Vashishta, Phys. Rev. E. 77, 066103 (2008)

    Article  ADS  Google Scholar 

  51. S.J. Blanksby, G.B. Ellison, Acc. Chem. Res. 36, 255 (2003)

    Article  Google Scholar 

  52. W. Zhang, P. Wu, Z. Li, J. Yang, J. Phys. Chem. C 115, 17782 (2011)

    Article  Google Scholar 

  53. Y. Shibuta, R. Arifin, K. Shimamura, T. Oguri, F. Shimojo, S. Yamaguchi, Chem. Phys. Lett. 610-611, 33 (2014)

    Article  ADS  Google Scholar 

  54. X. Li, W. Cai, L. Colombo, R.S. Ruoff, Nano Lett. 9, 4268 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizal Arifin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arifin, R., Shibuta, Y., Shimamura, K. et al. First principles calculation of CH4 decomposition on nickel (111) surface. Eur. Phys. J. B 88, 303 (2015). https://doi.org/10.1140/epjb/e2015-60557-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60557-7

Keywords

Navigation