Skip to main content
Log in

Mode-specific and bond-selective dissociative chemisorption of CHD3 and CH2D2 on Ni(111) revisited using a new potential energy surface

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Dissociative chemisorption of methane on a nickel surface is a prototypical system for studying mode-specific chemistry in gas-surface reactions. We recently developed a fifteen-dimensional potential energy surface for this system which has proven to be chemically accurate in reproducing the measured absolute dissociative sticking probabilities of CHD3 in thermal conditions and with vibrational excitation on Ni(111) at high incident energies. Here, using this new potential energy surface, we explored mode specificity and bond selectivity for CHD3 and CH2D2 dissociative chemisorption at low incidence energies down to ~50 kJ/mol via a quasi-classical trajectory method. Our calculated dissociation probabilities are consistent with previous theoretical and experimental ones with an average shift in translational energy of ~8 kJ/mol. Our results very well reproduce the C–H/C–D branching ratio upon the C–H local mode excitation, which can be rationalized by the sudden vector projection model. Quantitatively, however, the calculated dissociative sticking probabilities are systematically larger than experimental ones, due presumably to the artificial zero point energy leakage into reaction coordinate. Further high-dimensional quantum dynamics calculations are necessary for acquiring a chemically accurate description of methane dissociative chemisorption at low incident energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chorkendorff I, Niemantsverdriet JW. Concepts of Modern Catalysis and Kinetics. Weinheim: Wiley-VCH, 2003

    Book  Google Scholar 

  2. Larsen JH, Chorkendorff I. Surf Sci Rep, 1999, 35: 163–222

    Article  CAS  Google Scholar 

  3. Beck RD, Maroni P, Papageorgopoulos DC, Dang TT, Schmid MP, Rizzo TR. Science, 2003, 302: 98–100

    Article  CAS  PubMed  Google Scholar 

  4. Bisson R, Sacchi M, Beck RD. Phys Rev B, 2010, 82: 121404

    Article  CAS  Google Scholar 

  5. Hundt PM, van Reijzen ME, Ueta H, Beck RD. J Phys Chem Lett, 2014, 5: 1963–1967

    Article  CAS  PubMed  Google Scholar 

  6. Juurlink LBF, Smith RR, Killelea DR, Utz AL. Phys Rev Lett, 2005, 94: 208303

    Article  CAS  PubMed  Google Scholar 

  7. Chen N, Huang Y, Utz AL. J Phys Chem A, 2013, 117: 6250–6255

    Article  CAS  PubMed  Google Scholar 

  8. Bisson R, Sacchi M, Dang TT, Yoder B, Maroni P, Beck RD. J Phys Chem A, 2007, 111: 12679–12683

    Article  CAS  PubMed  Google Scholar 

  9. Smith RR, Killelea DR, DelSesto DF, Utz AL. Science, 2004, 304: 992–995

    Article  CAS  PubMed  Google Scholar 

  10. Ueta H, Chen L, Beck RD, Colón-Dìaz I, Jackson B. Phys Chem Chem Phys, 2013, 15: 20526–20535

    Article  CAS  PubMed  Google Scholar 

  11. Killelea DR, Campbell VL, Shuman NS, Utz AL. Science, 2008, 319: 790–793

    Article  CAS  PubMed  Google Scholar 

  12. Chen L, Ueta H, Bisson R, Beck RD. Faraday Discuss, 2012, 157: 285–295

    Article  CAS  PubMed  Google Scholar 

  13. Hundt PM, Ueta H, van Reijzen ME, Jiang B, Guo H, Beck RD. J Phys Chem A, 2015, 119: 12442–12448

    Article  CAS  PubMed  Google Scholar 

  14. Yoder BL, Bisson R, Beck RD. Science, 2010, 329: 553–556

    Article  CAS  PubMed  Google Scholar 

  15. Yoder BL, Bisson R, Morten Hundt P, Beck RD. J Chem Phys, 2011, 135: 224703

    Article  CAS  PubMed  Google Scholar 

  16. Maroni P, Papageorgopoulos DC, Sacchi M, Dang TT, Beck RD, Rizzo TR. Phys Rev Lett, 2005, 94: 246104

    Article  CAS  Google Scholar 

  17. Juurlink LBF, Killelea DR, Utz AL. Prog Surf Sci, 2009, 84: 69–134

    Article  CAS  Google Scholar 

  18. Chadwick H, Beck RD. Annu Rev Phys Chem, 2017, 68: 39–61

    Article  CAS  PubMed  Google Scholar 

  19. Chadwick H, Beck RD. Chem Soc Rev, 2016, 45: 3576–3594

    Article  CAS  PubMed  Google Scholar 

  20. Hundt PM, Jiang B, van Reijzen ME, Guo H, Beck RD. Science, 2014, 344: 504–507

    Article  CAS  PubMed  Google Scholar 

  21. Jiang B, Guo H. J Chem Phys, 2016, 144: 091101

    Article  CAS  PubMed  Google Scholar 

  22. Jiang B. Chem Sci, 2017, 8: 6662–6669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Z, Liu T, Fu B, Yang X, Zhang DH. Nat Commun, 2016, 7: 11953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu T, Zhang Z, Fu B, Yang X, Zhang DH. Chem Sci, 2016, 7: 1840–1845

    Article  CAS  PubMed  Google Scholar 

  25. Liu T, Fu B, Zhang DH. Phys Chem Chem Phys, 2017, 19: 11960–11967

    Article  CAS  PubMed  Google Scholar 

  26. Liu T, Zhang Z, Fu B, Yang X, Zhang DH. Phys Chem Chem Phys, 2016, 18: 8537–8544

    Article  CAS  PubMed  Google Scholar 

  27. Liu T, Zhang Z, Chen J, Fu B, Zhang DH. Phys Chem Chem Phys, 2016, 18: 26358–26364

    Article  CAS  PubMed  Google Scholar 

  28. Jiang B, Liu R, Li J, Xie D, Yang M, Guo H. Chem Sci, 2013, 4: 3249–3254

    Article  CAS  Google Scholar 

  29. Shen X, Chen J, Zhang Z, Shao K, Zhang DH. J Chem Phys, 2015, 143: 144701

    Article  CAS  PubMed  Google Scholar 

  30. Shen X, Zhang Z, Zhang DH. Phys Chem Chem Phys, 2015, 17: 25499–25504

    Article  CAS  PubMed  Google Scholar 

  31. Shen X, Zhang Z, Zhang DH. J Chem Phys, 2016, 144: 101101

    Article  CAS  PubMed  Google Scholar 

  32. Shen X, Zhang Z, Zhang DH. J Chem Phys, 2017, 147: 024702

    Article  CAS  PubMed  Google Scholar 

  33. Palma J, Clary DC. J Chem Phys, 2000, 112: 1859–1867

    Article  CAS  Google Scholar 

  34. Jiang B, Guo H. J Phys Chem C, 2013, 117: 16127–16135

    Article  CAS  Google Scholar 

  35. Shen XJ, Lozano A, Dong W, Busnengo HF, Yan XH. Phys Rev Lett, 2014, 112: 046101

    Article  CAS  PubMed  Google Scholar 

  36. Jiang B, Guo H. J Phys Chem C, 2016, 120: 8220–8226

    Article  CAS  Google Scholar 

  37. Luo X, Jiang B, Juaristi JI, Alducin M, Guo H. J Chem Phys, 2016, 145: 044704

    Article  CAS  PubMed  Google Scholar 

  38. Füchsel G, Thomas PS, den Uyl J, Öztürk Y, Nattino F, Meyer HD, Kroes GJ. Phys Chem Chem Phys, 2016, 18: 8174–8185

    Article  CAS  PubMed  Google Scholar 

  39. Nattino F, Ueta H, Chadwick H, van Reijzen ME, Beck RD, Jackson B, van Hemert MC, Kroes GJ. J Phys Chem Lett, 2014, 5: 1294–1299

    Article  CAS  PubMed  Google Scholar 

  40. Jackson B, Nave S. J Chem Phys, 2011, 135: 114701

    Article  CAS  PubMed  Google Scholar 

  41. Jackson B, Nave S. J Chem Phys, 2013, 138: 174705

    Article  CAS  PubMed  Google Scholar 

  42. Nave S, Tiwari AK, Jackson B. J Phys Chem A, 2014, 118: 9615–9631

    Article  CAS  PubMed  Google Scholar 

  43. Guo H, Farjamnia A, Jackson B. J Phys Chem Lett, 2016, 7: 4576–4584

    Article  CAS  PubMed  Google Scholar 

  44. Guo H, Jackson B. J Chem Phys, 2016, 144: 184709

    Article  CAS  PubMed  Google Scholar 

  45. Guo H, Jackson B. J Phys Chem C, 2015, 119: 14769–14779

    Article  CAS  Google Scholar 

  46. Nave S, Jackson B. Phys Rev Lett, 2007, 98: 173003

    Article  CAS  PubMed  Google Scholar 

  47. Tiwari AK, Nave S, Jackson B. J Chem Phys, 2010, 132: 134702

    Article  CAS  PubMed  Google Scholar 

  48. Jiang B, Guo H. J Chem Phys, 2013, 138: 234104–234110

    Article  CAS  PubMed  Google Scholar 

  49. Guo H, Jiang B. Acc Chem Res, 2014, 47: 3679–3685

    Article  CAS  PubMed  Google Scholar 

  50. Perdew JP, Wang Y. Phys Rev B, 1992, 45: 13244–13249

    Article  CAS  Google Scholar 

  51. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  PubMed  Google Scholar 

  52. Hammer B, Hansen LB, Nørskov JK. Phys Rev B, 1999, 59: 7413–7421

    Article  Google Scholar 

  53. Díaz C, Pijper E, Olsen RA, Busnengo HF, Auerbach DJ, Kroes GJ. Science, 2009, 326: 832–834

    Article  CAS  PubMed  Google Scholar 

  54. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI. Phys Rev Lett, 2004, 92: 246401

    Article  CAS  PubMed  Google Scholar 

  55. Nattino F, Migliorini D, Kroes GJ, Dombrowski E, High EA, Killelea DR, Utz AL. J Phys Chem Lett, 2016, 7: 2402–2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Migliorini D, Chadwick H, Nattino F, Gutiérrez-González A, Dombrowski E, High EA, Guo H, Utz AL, Jackson B, Beck RD, Kroes GJ. J Phys Chem Lett, 2017, 8: 4177–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chadwick H, Guo H, Gutiérrez-González A, Menzel JP, Jackson B, Beck RD. J Chem Phys, 2018, 148: 014701

    Article  CAS  PubMed  Google Scholar 

  58. Ensing B, De Vivo M, Liu Z, Moore P, Klein ML. Acc Chem Res, 2006, 39: 73–81

    Article  CAS  PubMed  Google Scholar 

  59. Zhou X, Nattino F, Zhang Y, Chen J, Kroes GJ, Guo H, Jiang B. Phys Chem Chem Phys, 2017, 19: 30540–30550

    Article  CAS  PubMed  Google Scholar 

  60. Blöchl PE. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  61. Kresse G, Joubert D. Phys Rev B, 1999, 59: 1758–1775

    Article  CAS  Google Scholar 

  62. Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  63. Kresse G, Furthmüller J. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  64. Jiang B, Li J, Guo H. Int Rev Phys Chem, 2016, 35: 479–506

    Article  CAS  Google Scholar 

  65. Jiang B, Guo H. J Chem Phys, 2014, 141: 034109

    Article  CAS  PubMed  Google Scholar 

  66. Hu X, Hase WL, Pirraglia T. J Comput Chem, 1991, 12: 1014–1024

    Article  CAS  Google Scholar 

  67. Hand M, Harris J. J Chem Phys, 1990, 92: 7610–7617

    Article  CAS  Google Scholar 

  68. Wang XG, Sibert Iii EL. J Chem Phys, 1999, 111: 4510–4522

    Article  CAS  Google Scholar 

  69. Mastromatteo M, Jackson B. J Chem Phys, 2013, 139: 194701

    Article  CAS  PubMed  Google Scholar 

  70. Nour Ghassemi E, Wijzenbroek M, Somers MF, Kroes GJ. Chem Phys Lett, 2017, 683: 329–335

    Article  CAS  Google Scholar 

  71. Nave S, Tiwari AK, Jackson B. J Chem Phys, 2010, 132: 054705

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0303500), the National Natural Science Foundation of China (91645202, 21722306, 21573203), Anhui Initiative in Quantum Information Technologies, and partially supported by Fundamental Research Funds for the Central Universities (WK2060190082, WK2340000078). We thank Supercomputing Center of USTC and AMHPC for offering us high-performance computing services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Jiang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Jiang, B. Mode-specific and bond-selective dissociative chemisorption of CHD3 and CH2D2 on Ni(111) revisited using a new potential energy surface. Sci. China Chem. 61, 1134–1142 (2018). https://doi.org/10.1007/s11426-018-9343-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9343-0

Keywords

Navigation