Skip to main content
Log in

Thermodynamic anomalies in the presence of general linear dissipation: from the free particle to the harmonic oscillator

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A free particle coupled to a heat bath can exhibit a number of thermodynamic anomalies like a negative specific heat, reentrant classicality or a nonmonotonic entropy. These low-temperature phenomena are expected to be modified at very low temperatures where finite-size effects associated with the discreteness of the energy spectrum become relevant. In this paper, we explore in which form the thermodynamic anomalies visible in the specific heat and the entropy of the free damped particle appear for a damped harmonic oscillator. Since the discreteness of the oscillator’s energy spectrum is fully accounted for, the results are valid for arbitrary temperatures. As expected, they are in agreement with the third law of thermodynamics and indicate how the thermodynamic anomalies of the free damped particle can be reconciled with the third law. Particular attention is paid to the transition from the harmonic oscillator to the free particle when the limit of the oscillator frequency to zero is taken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hänggi, G.-L. Ingold, Acta Phys. Pol. B 37, 1537 (2006)

    ADS  Google Scholar 

  2. P. Hänggi, G.-L. Ingold, P. Talkner, New J. Phys. 10, 115008 (2008)

    Article  Google Scholar 

  3. G.-L. Ingold, Eur. Phys. J. B 85, 30 (2012)

    Article  ADS  Google Scholar 

  4. R. Žitko, T. Pruschke, Phys. Rev. B 79, 012507 (2009)

    ADS  Google Scholar 

  5. L. Merker, T.A. Costi, Phys. Rev. B 86, 075150 (2012)

    Article  ADS  Google Scholar 

  6. M. Campisi, D. Zueco, P. Talkner, Chem. Phys. 375, 187 (2010)

    Article  ADS  Google Scholar 

  7. M. Campisi, P. Talkner, P. Hänggi, J. Phys. A 42, 392002 (2009)

    Article  MathSciNet  Google Scholar 

  8. A. Sulaiman, F.P. Zen, H. Alatas, L.T. Handoko, Phys. Rev. E 81, 061907 (2010)

    Article  ADS  Google Scholar 

  9. B. Spreng, G.-L. Ingold, U. Weiss, EPL 103, 60007 (2013)

    Article  ADS  Google Scholar 

  10. J. Sabio, L. Borda, F. Guinea, F. Sols, Phys. Rev. B 78, 085439 (2008)

    Article  ADS  Google Scholar 

  11. C.-Y. Wang, A.-Q. Zhao, X.-M. Kong, Mod. Phys. Lett. B 26, 1150043 (2012)

    Article  ADS  Google Scholar 

  12. M. Bandyopadhyay, J. Stat. Mech. Theory Exp. 2009, P05002 (2009)

    Google Scholar 

  13. J. Kumar, P.A. Sreeram, S. Dattagupta, Phys. Rev. E 79, 021130 (2009)

    Article  ADS  Google Scholar 

  14. S. Dattagupta, J. Kumar, S. Sinha, P.A. Sreeram, Phys. Rev. E 81, 031136 (2010)

    Article  ADS  Google Scholar 

  15. M. Bandyopadhyay, S. Dattagupta, Phys. Rev. E 81, 042102 (2010)

    Article  ADS  Google Scholar 

  16. M. Bandyopadhyay, J. Stat. Phys. 140, 603 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. J. Kumar, AIP Adv. 3, 112131 (2013)

    Article  ADS  Google Scholar 

  18. J. Kumar, Physica A 393, 182 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  19. H. Hasegawa, J. Math. Phys. 52, 123301 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. U. Weiss, Quantum Dissipative Systems, 4th edn. (World Scientific, Singapore, 2012)

  21. G.W. Ford, J.T. Lewis, R.F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  22. G.W. Ford, J.T. Lewis, R.F. O’Connell, Ann. Phys. (N.Y.) 185, 270 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  23. G.-L. Ingold, P. Hänggi, P. Talkner, Phys. Rev. E 79, 061105 (2009)

    Article  ADS  Google Scholar 

  24. C. Hörhammer, H. Büttner, J. Stat. Phys. 133, 1161 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. S. Florens, A. Rosch, Phys. Rev. Lett. 92, 216601 (2004)

    Article  ADS  Google Scholar 

  26. G.L. Klimchitskaya, V.M. Mostepanenko, Contemp. Phys. 47, 131 (2006)

    Article  ADS  Google Scholar 

  27. J.S. Høye, I. Brevik, S.A. Ellingsen, J.B. Aarseth, Phys. Rev. E 75, 051127 (2007)

    Article  ADS  Google Scholar 

  28. K.A. Milton, J. Phys.: Conf. Ser. 161, 012001 (2009)

    ADS  Google Scholar 

  29. G.-L. Ingold, A. Lambrecht, S. Reynaud, Phys. Rev. E 80, 041113 (2009)

    Article  ADS  Google Scholar 

  30. F. Intravaia, C. Henkel, Phys. Rev. Lett. 103, 130405 (2009)

    Article  ADS  Google Scholar 

  31. M. Boström, B.E. Sernelius, Physica A 339, 53 (2004)

    Article  ADS  Google Scholar 

  32. R. Jung, G.-L. Ingold, H. Grabert, Phys. Rev. A 32, 2510 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert-Ludwig Ingold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamietz, R., Ingold, GL. & Weiss, U. Thermodynamic anomalies in the presence of general linear dissipation: from the free particle to the harmonic oscillator. Eur. Phys. J. B 87, 90 (2014). https://doi.org/10.1140/epjb/e2014-50125-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50125-2

Keywords

Navigation