Skip to main content
Log in

Dissipative Cyclotron Motion of a Charged Quantum-Oscillator and Third Law

Low Temperature Thermodynamics and Dissipative Cyclotron Motion

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this work, low temperature thermodynamic behavior in the context of cyclotron motion of a charged-oscillator with different coupling schemes is analyzed. We find that finite dissipation substitutes the zero-coupling result of exponential decay of entropy by a power law behavior at low temperature. The power of the power law explicitly depends on the nature of the power spectrum of the heat bath. It is seen that velocity–velocity coupling is the most advantageous coupling scheme to ensure the third law of thermodynamics. The cases of confinement (ω 0≠0) and without confinement (ω 0=0) are discussed separately. It is also revealed that different thermodynamic functions are independent of magnetic field at very low temperature for ω 0≠0, but they depend on cyclotron frequency (ω c =eB/mc) for ω 0=0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nernst, W.: Nachr. Kgl. Ges. d. Wiss. Göttingen 6, 1 (1906)

    Google Scholar 

  2. Nernst, W.: Sitzungsber. Preuss. Akad. Wiss. 13, 311 (1911)

    Google Scholar 

  3. Nernst, W.: Sitzungsber. Preuss. Akad. Wiss. 14, 134 (1911)

    Google Scholar 

  4. Planck, M.: Vorlesungen über Thermodynamik. Veit & Comp. (1917)

  5. Leggett, A.J.: Ann. Phys. (NY) 72, 80 (1972)

    Article  ADS  Google Scholar 

  6. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics, 2nd edn. Wiley, New York (1985)

    MATH  Google Scholar 

  7. Dugdale, J.S.: Entropy and Its Physical Meaning. Taylor and Francis, London (1996)

    Book  Google Scholar 

  8. Wilks, J.: The Third Law of Thermodynamics. Oxford University Press, Oxford (1961)

    MATH  Google Scholar 

  9. Hänggi, P., Ingold, G.L.: Acta Phys. Pol. B 37, 1537 (2006)

    ADS  Google Scholar 

  10. Hänggi, P., Ingold, G.-L., Talkner, P.: New J. Phys. 10, 115008 (2008)

    Article  Google Scholar 

  11. Hänggi, P., Ingold, G.-L., Talkner, P.: arXiv:0811.3509 (2008)

  12. Ingold, G.-L., Hänggi, P., Talkner, P.: Phys. Rev. E 79, 061105 (2009)

    Article  ADS  Google Scholar 

  13. Einstein, A.: Ann. Phys. 22, 180 (1907)

    Google Scholar 

  14. Einstein, A.: Ann. Phys. 22, 800 (1907)

    Article  Google Scholar 

  15. Einstein, A.: Ann. Phys. 35, 679 (1911)

    Google Scholar 

  16. Hänggi, P., Ingold, G.-L., Talkner, P.: New J. Phys. 10, 115008 (2008)

    Article  Google Scholar 

  17. Ingold, G.L., Hänggi, P., Talkner, P.: Phys. Rev. E 79, 061105 (2009)

    Article  ADS  Google Scholar 

  18. Ingold, G.-L., Lambrecht, A., Reynaud, S.: Phys. Rev. E 80, 041113 (2009)

    Article  ADS  Google Scholar 

  19. Grinstein, G., Mazenko, G. (eds.): Directions in Condensed Matter Physics. World Scientific, Singapore (1986)

    Google Scholar 

  20. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1977)

    Google Scholar 

  21. Imry, Y.: Introduction to Mesoscopic Physics. Oxford University Press, Oxford (1997)

    Google Scholar 

  22. Chakravarty, S., Schmid, A.: Weak localization: the quasiclassical theory of electrons in a random potential. Phys. Rep. 140, 193 (1986)

    Article  ADS  Google Scholar 

  23. Landau, L.: Z. Phys. 64, 629 (1930)

    Article  ADS  Google Scholar 

  24. van Vleck, J.H.: The Theory of Electric and Magnetic Susceptibilities. Oxford University Press, London (1932)

    MATH  Google Scholar 

  25. Bandyopadhyay, M., Dattagupta, S.: J. Phys. Condens. Matter 18, 10029 (2006)

    Article  ADS  Google Scholar 

  26. Bandyopadhyay, M., Dattagupta, S.: J. Stat. Phys. 123, 1273 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Dattagupta, S., Singh, J.: Phys. Rev. Lett. 79, 961 (1997)

    Article  ADS  Google Scholar 

  28. Jayannavar, A.M., Kumar, N.: J. Phys. A 14, 1399 (1981)

    Article  ADS  Google Scholar 

  29. Dattagupta, S., Jayannavar, A.M., Kumar, N.: Curr. Sci. 80, 861 (2001)

    Google Scholar 

  30. Laughlin, R.B.: Phys. Rev. B 23, 5632 (1981)

    Article  ADS  Google Scholar 

  31. Klitzing, K.V., Dorda, G., Pepper, M.: Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  32. Friedrich, H., Wintgen, D.: Phys. Rep. 183, 37 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  33. Jacak, L., Hawrylak, P., Wojs, A.: Quantum Dots. Springer, Berlin (1997)

    Google Scholar 

  34. Bandyopadhyay, M.: J. Stat. Mech. L03001 (2006)

  35. Bandyopadhyay, M.: J. Stat. Mech. P10010 (2006)

  36. Li, X.L., Ford, G.W., O’Connell, R.F.: Phys. Rev. A 41, 5287 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  37. Li, X.L., Ford, G.W., O’Connell, R.F.: Phys. Rev. A 42, 4519 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  38. Sikorski, Ch., Merkt, U.: Phys. Rev. Lett. 62, 2164 (1989)

    Article  ADS  Google Scholar 

  39. Merkt, U.: Physica B 189, 165 (1993)

    Article  ADS  Google Scholar 

  40. Caldeira, A.O., Leggett, A.J.: Ann. Phys. (NY) 149, 374 (1984)

    Article  ADS  Google Scholar 

  41. Caldeira, A.O., Leggett, A.J.: Physica (Amsterdam) 121A, 587 (1993)

    MathSciNet  ADS  Google Scholar 

  42. Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A.: Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  43. Bennett, C.H.: Phys. Today 48(10), 24 (1995)

    Article  Google Scholar 

  44. Zeilinger, A.: Nature 408, 639 (2000)

    Article  ADS  Google Scholar 

  45. Zeilinger, A.: Science 289, 405 (2000)

    Article  Google Scholar 

  46. Giulini, D., Joos, E., Kiefer, C., Kupischg, J., Stamatescu, I.O., Zeh, H.D.: Decoherence and the Appearence of a Classical World in Quantum Theory. Springer, New York (1996)

    Google Scholar 

  47. Myatt, C.J., King, B.E., Turchette, Q.A., Sackett, C.A., Kielpinski, D., Itano, W.M., Monroe, C., Wineland, D.J.: Nature 403, 269 (2000)

    Article  ADS  Google Scholar 

  48. Capek, V., Sheehan, D.P.: Challenges to the Second Law of Thermodynamics. Springer, Dordrecht (2005)

    MATH  Google Scholar 

  49. Shicka, V., Nieuwenhuizen, T.: Proceedings of the conference on frontiers of quantum and mesoscopic thermodynamics. Physica E 29, 1 (2005)

    Article  ADS  Google Scholar 

  50. Sheehan, D.P.: Quantum Limits to the Second Law: First International Conference on Quantum Limits to the Second Law. AIP Conference Proceedings, vol. 643, p. 1 (2002)

  51. Nieuwenhuizen, Th.M., Allahverdyan, A.E.: Phys. Rev. E 66, 036102 (2002)

    Article  ADS  Google Scholar 

  52. Ford, G.W., O’Connell, R.F.: Physica E 29, 82 (2005)

    Article  ADS  Google Scholar 

  53. O’Connell, R.F.: J. Stat. Phys. 124, 15 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  54. Wang, C.-Y., Bao, J.-D.: Chin. Phys. Lett. 25, 429 (2008)

    Article  ADS  Google Scholar 

  55. Bai, Z.W., Bao, J.D., Song, Y.L.: Phys. Rev. E 72, 061105 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  56. Bandyopadhyay, M.: J. Stat. Mech. P05002 (2009)

  57. Bandyopadhyay, M., Dattagupta, S.: Phys. Rev. E 81, 042102 (2010)

    Article  ADS  Google Scholar 

  58. Kumar, J., Sreeram, P.A., Dattagupta, S.: Phys. Rev. E 79, 021130 (2009)

    Article  ADS  Google Scholar 

  59. Dattagupta, S., Kumar, J., Sinha, S., Sreeram, P.A.: Phys. Rev. E 81, 031136 (2010)

    Article  ADS  Google Scholar 

  60. Feynman, R.P., Vernon, F.L.: Ann. Phys. (NY) 24, 118 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  61. Caldeira, A.O., Leggett, A.J.: Physica A 121, 587 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. Leggettt, A.J.: Phys. Rev. B 30, 1208 (1984)

    Article  ADS  Google Scholar 

  63. Weiss, U.: Quantum Dissipative Systems, 2nd edn. World Scientific, Singapore (1999)

    MATH  Google Scholar 

  64. Bao, J.D., Zhuo, Y.Z.: Phys. Rev. E 71, 010102(R) (2005)

    Article  ADS  Google Scholar 

  65. Weiss, U.: Quantum Dissipative Systems, 2nd edn. World Scientific, Singapore (1999)

    MATH  Google Scholar 

  66. Ford, G.W., Lewis, J.T., O’Connell, R.F.: J. Stat. Phys. 53, 439 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  67. Ford, G.W., Lewis, J.T., O’Connell, R.F.: Ann. Phys. (NY) 185, 270 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  68. Li, X.L., Ford, G.W., O’Connell, R.F.: Phys. Rev. A 42, 4519 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  69. Li, X.L., Ford, G.W., O’Connell, R.F.: Phys. Rev. A 41, 5287 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  70. Ford, G.W., Lewis, J.T., O’Connell, R.F.: Phys. Rev. A 37, 4419 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  71. Sols, F., Zapata, I.: In: Ferrero, M., van der Merwe, A. (eds.) New Developments on Fundamental Problems in Quantum Physics. Kluwer, Dordrecht (1997)

    Google Scholar 

  72. Dykman, M.I., McClintock, P.V.E., Stein, N.D., Stocks, N.G.: Phys. Rev. Lett. 67, 933 (1991)

    Article  ADS  Google Scholar 

  73. Ford, G.W., Lewis, J.T., O’Connell, R.F.: Phys. Rev. Lett. 55, 2273 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  74. Spicka, V., Nieuwenhuizen, Th.M., Keefe, P.D.: Physica E 29, 1 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay Bandyopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandyopadhyay, M. Dissipative Cyclotron Motion of a Charged Quantum-Oscillator and Third Law. J Stat Phys 140, 603–618 (2010). https://doi.org/10.1007/s10955-010-9998-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-9998-4

Keywords

Navigation