Skip to main content
Log in

Theory of magnetic oscillations in Weyl semimetals

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Weyl semimetals are a new class of Dirac material that possesses bulk energy nodes in three dimensions, in contrast to two dimensional graphene. In this paper, we study a Weyl semimetal subject to an applied magnetic field. We find distinct behavior that can be used to identify materials containing three dimensional Dirac fermions. We derive expressions for the density of states, electronic specific heat, and the magnetization. We focus our attention on the quantum oscillations in the magnetization. We find phase shifts in the quantum oscillations that distinguish the Weyl semimetal from conventional three dimensional Schrödinger fermions, as well as from two dimensional Dirac fermions. The density of states as a function of energy displays a sawtooth pattern which has its origin in the dispersion of the three dimensional Landau levels. At the same time, the spacing in energy of the sawtooth spike goes like the square root of the applied magnetic field which reflects the Dirac nature of the fermions. These features are reflected in the specific heat and magnetization. Finally, we apply a simple model for disorder and show that this tends to damp out the magnetic oscillations in the magnetization at small fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011)

    Article  ADS  Google Scholar 

  2. W. Witczak-Krempa, Y.B. Kim, Phys. Rev. B 85, 045124 (2012)

    Article  ADS  Google Scholar 

  3. P. Hosur, S.A. Parameswaran, A. Vishwanath, Phys. Rev. Lett. 108, 046602 (2012)

    Article  ADS  Google Scholar 

  4. B. Rosenstein, M. Lewkowicz, Phys. Rev. B 88, 045108 (2013)

    Article  ADS  Google Scholar 

  5. K.Y. Yang, Y.M. Lu, Y. Ran, Phys. Rev. B 84, 075129 (2011)

    Article  ADS  Google Scholar 

  6. G. Xu, H. Weng, Z. Wang, X. Dai, Z. Fang, Phys. Rev. Lett. 107, 186806 (2011)

    Article  ADS  Google Scholar 

  7. P. Goswami, S. Tewari, Phys. Rev. B 88, 245107 (2013)

    Article  ADS  Google Scholar 

  8. A.A. Burkov, L. Balents, Phys. Rev. Lett. 107, 127205 (2011)

    Article  ADS  Google Scholar 

  9. A.A. Zyuzin, S. Wu, A.A. Burkov, Phys. Rev. B 85, 165110 (2012)

    Article  ADS  Google Scholar 

  10. J.H. Zhou, H. Jiang, Q. Niu, J.R. Shi, Chinese Phys. Lett. 30, 027101 (2013)

    Article  ADS  Google Scholar 

  11. Y. Chen, S. Wu, A.A. Burkov, Phys. Rev. B 88, 125105 (2013)

    Article  ADS  Google Scholar 

  12. P. Hosur, Phys. Rev. B 86, 195102 (2012)

    Article  ADS  Google Scholar 

  13. C.X. Liu, P. Ye, X.L. Qi, Phys. Rev. B 87, 235306 (2013)

    Article  ADS  Google Scholar 

  14. G.Y. Cho, arXiv:1110.1939 (2011)

  15. A.A. Burkov, M.D. Hook, L. Balents, Phys. Rev. B 84, 235126 (2011)

    Article  ADS  Google Scholar 

  16. G.B. Halász, L. Balents, Phys. Rev. B 85, 035103 (2012)

    Article  ADS  Google Scholar 

  17. S.M. Young, S. Zaheer, J.C.Y. Teo, C.L. Kane, E.J. Mele, A.M. Rappe, Phys. Rev. Lett. 108, 140405 (2012)

    Article  ADS  Google Scholar 

  18. T. Timusk, J.P. Carbotte, C.C. Homes, D.N. Basov, S.G. Sharapov, Phys. Rev. B 87, 235121 (2013)

    Article  ADS  Google Scholar 

  19. M. Neupane et al., arXiv:1309.7892 [cond-mat.mes- hall] (2013)

  20. S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Buechner, R.J. Cava, arXiv:1309.7978 [cond-mat. mes-hall] (2013)

  21. M. Orlita et al., Nat. Phys. 10, 233 (2014)

    Article  Google Scholar 

  22. O. Vafek, A. Vishwanath, Annual Review of Condensed Matter Physics 5, 83 (2014)

    Article  Google Scholar 

  23. S. Parameswaran, T. Grover, D.A. Abanin, D.A. Pesin, A. Vishwanath, arXiv:1306.1234 [cond-mat.str-el] (2013)

  24. P.E.C. Ashby, J.P. Carbotte, Phys. Rev. B 87, 245131 (2013)

    Article  ADS  Google Scholar 

  25. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, J. Phys.: Condens. Matter 19, 026222 (2007)

    ADS  Google Scholar 

  26. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, New J. Phys. 11, 095013 (2009)

    Article  ADS  Google Scholar 

  27. A. Pound, J.P. Carbotte, E.J. Nicol, Phys. Rev. B 85, 125422 (2012)

    Article  ADS  Google Scholar 

  28. J.N. Fuchs, F. Piéchon, M.O. Goerbig, G. Montambaux, Eur. Phys. J. B 77, 351 (2010)

    Article  ADS  Google Scholar 

  29. A.R. Wright, R.H. McKenzie, Phys. Rev. B 87, 085411 (2013)

    Article  ADS  Google Scholar 

  30. S.G. Sharapov, V.P. Gusynin, H. Beck, Phys. Rev. B 69, 075104 (2004)

    Article  ADS  Google Scholar 

  31. M. Bordag, U. Mohideen, V.M. Mostepanenko, Phys. Rep. 353, 1 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip E. C. Ashby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashby, P.E.C., Carbotte, J.P. Theory of magnetic oscillations in Weyl semimetals. Eur. Phys. J. B 87, 92 (2014). https://doi.org/10.1140/epjb/e2014-50023-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50023-7

Keywords

Navigation