Skip to main content
Log in

Electronic properties of a Weyl semimetal in crossed magnetic and electric fields

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The study of Weyl semimetals is one of the most challenging problems of condensed matter physics. These materials exhibit interesting properties in a magnetic field. In this work, we investigate the Landau bands and the density of states (DOS) oscillations in a Weyl semimetal in crossed magnetic and electric fields. An expression is obtained for the energy spectrum of the system using the following three different methods: an algebraic approach, a Lorentz shift-based approach, and a quasi-classical approach. It is interesting that the energy spectrum calculated in terms of the quasi-classical approach coincides with the spectrum obtained using the microscopic approaches. An electric field is shown to change the Landau bands radically. In addition, the classical motion of a three-dimensional Dirac fermion in crossed fields is studied. In the case of a Dirac spectrum, the longitudinal (with respect to magnetic field) component of momentum (p z ǁ H) is shown to be an oscillating function of the magnetic field. When the electric field is vH/c, the Landau levels collapse and the motion becomes fully linear in an unusual manner. In this case, the wavefunction of bulk states vanishes and only states with p z = 0 are retained. An electric field affects the character of DOS oscillations. An analytical expression is obtained for the quantum capacitance in crossed fields in the cases of strong and weak electric fields. Thus, an electric field is an additional parameter for adjusting the diamagnetic properties of Weyl semimetals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Vafek and A. Vishwanath, Ann. Rev. Condens. Matter Phys. 5, 83 (2014).

    Article  ADS  Google Scholar 

  2. Sh. Jia, S.-Y. Xu, and M. Z. Hasan, Nat. Mater. 15, 1140 (2016).

    Article  ADS  Google Scholar 

  3. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    Article  ADS  Google Scholar 

  4. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  5. A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  6. A. Turner and A. Vishwanath, arXiv:1301.0330.

  7. A. A. Burkov, J. Phys.: Condens. Matter 27, 113201 (2015).

    ADS  Google Scholar 

  8. S.-Y. Xu et al., Science 349, 613 (2015).

    Article  ADS  Google Scholar 

  9. L. Lu et al., Science 349, 622 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  10. B. Q. Lv et al., Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  11. P. G. Grinevich and G. E. Volovik, J. Low Temp. Phys. 72, 371 (1988).

    Article  ADS  Google Scholar 

  12. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  13. S. A. Parameswaran, T. Grover, D. A. Abanin, D. A. Pesin, and A. Vishwanath, Phys. Rev. X 4, 031035 (2014).

    Google Scholar 

  14. P. Hosur and X. Qi, Comp. Rend. Phys. 14, 857 (2013).

    Article  ADS  Google Scholar 

  15. A. C. Potter, I. Kimchi, and A. Vishwanath, Nat. Commun. 5, 5161 (2014).

    Article  ADS  Google Scholar 

  16. D. Bulmash and X.-L. Qi, Phys. Rev. B 93, 081103(R) (2016).

    Article  ADS  Google Scholar 

  17. A. R. Battye and A. Moss, Phys. Rev. Lett. 112, 051303 (2014).

    Article  ADS  Google Scholar 

  18. T.-R. Chang et al., Nat. Commun. 7, 10639 (2016).

    Article  ADS  Google Scholar 

  19. A. Soluyanov et al., Nature 527, 495 (2015).

    Article  ADS  Google Scholar 

  20. Z. J. Wang et al., Phys. Rev. Lett. 117, 056805 (2016).

    Article  ADS  Google Scholar 

  21. Y. Sun, S.-C. Wu, M. N. Ali, C. Felser, and B. Yan, Phys. Rev. B 92, 161107 (2015).

    Article  ADS  Google Scholar 

  22. I. Belopolski, D. S. Sanchez, et al., Nat. Commun. 7, 13643 (2016).

    Article  ADS  Google Scholar 

  23. Y. Alavirad and J. D. Sau, Phys. Rev. B 94, 115160 (2016).

    Article  ADS  Google Scholar 

  24. V. A. Volkov and V. V. Enaldiev, J. Exp. Theor. Phys. 122, 608 (2016).

    Article  ADS  Google Scholar 

  25. Y. Baum, E. Berg, S. A. Parameswaran, and A. Stern, Phys. Rev. X 5, 041046 (2015).

    Google Scholar 

  26. Y. Baum and A. Stern, arXiv:1612.00018.

  27. V. Lukose, R. Shankar, and G. Baskaran, Phys. Rev. Lett. 98, 116802 (2007).

    Article  ADS  Google Scholar 

  28. N. Peres and E. V. Castro, J. Phys.: Condens. Matter 19, 406231 (2007).

    Google Scholar 

  29. Z. Z. Alisultanov, JETP Lett. 99, 702 (2014).

    Article  ADS  Google Scholar 

  30. Z. Z. Alisultanov, JETP Lett. 99, 232 (2014).

    Article  ADS  Google Scholar 

  31. Z. Z. Alisultanov and M. S. Reis, Europhys. Lett. 113, 28004 (2016).

    Article  ADS  Google Scholar 

  32. Z. Z. Alisultanov and M. S. Reis, Solid State Commun. 234–235, 26 (2016).

    Article  Google Scholar 

  33. Z. Z. Alisultanov, JETP Lett. 105, 442 (2017).

    Article  ADS  Google Scholar 

  34. Z.-M. Yu, Y. Yao, and S. A. Yang, Phys. Rev. Lett. 117, 077202 (2016).

    Article  ADS  Google Scholar 

  35. S. Tchoumakov, M. Civelli, and M. O. Goerbig, Phys. Rev. Lett. 117, 086402 (2016).

    Article  ADS  Google Scholar 

  36. A. G. Aronov and G. E. Pikus, Sov. Phys. JETP 24, 339 (1966).

    ADS  Google Scholar 

  37. J. S. Bell and R. Jackiw, Nuovo Cimento A 60, 47 (1969).

    Article  ADS  Google Scholar 

  38. S. L. Adler, Phys. Rev. 177, 2426 (1969).

    Article  ADS  Google Scholar 

  39. A. H. MacDonald, Phys. Rev. B 28, 2235 (1983).

    Article  ADS  Google Scholar 

  40. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).

    MATH  Google Scholar 

  41. P. E. C. Ashby and J. P. Carbotte, Eur. Phys. J. B 87, 92 (2014).

    Article  ADS  Google Scholar 

  42. E. C. Phillip, P. E. C. Ashby and J. P. Carbotte, Phys. Rev. B 87, 245131 (2013).

    Article  ADS  Google Scholar 

  43. L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S. Novoselov, M. I. Katsnelson, and A. K. Geim, Phys. Rev. Lett. 105, 136801 (2010).

    Article  ADS  Google Scholar 

  44. G. L. Yu, R. Jalil, B. Belle, A. S. Mayorov, P. Blake, F. Schedin, S. V. Morozov, L. A. Ponomarenko, F. Chiappini, S. Wiedmann, U. Zeitler, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, and D. C. Elias, Proc. Natl. Acad. Sci. USA 110, 3281 (2013).

    Article  ADS  Google Scholar 

  45. V. P. Gusynin, V. M. Loktev, I. A. Luk’yanchuk, S. G. Sharapov, and A. A. Varlamov, Low Temp. Phys. 40, 270 (2014).

    Article  ADS  Google Scholar 

  46. Z. Z. Alisultanov, J. Exp. Theor. Phys. 122, 341 (2016).

    Article  ADS  Google Scholar 

  47. Z. Z. Alisultanov, J. Exp. Theor. Phys. 146, 340 (2014).

    Google Scholar 

  48. I. M. Lifshits and M. I. Kaganov, Sov. Phys. Usp. 2, 831 (1959).

    Article  ADS  Google Scholar 

  49. J. Nissinen and G. E. Volovik, JETP Lett. 105, 447 (2017).

    Article  ADS  Google Scholar 

  50. I. M. Lifshits, M. Ya. Azbel, and M. I. Kaganov, Electron Theory of Metals (Nauka, Moscow, 1971; Plenum, New York, 1973).

    MATH  Google Scholar 

  51. Z. Z. Alisultanov, Physica B 438, 41 (2014).

    Article  ADS  Google Scholar 

  52. I. M. Lifshits and A. M. Kosevich, Sov. Phys. JETP 2, 635 (1955).

    Google Scholar 

  53. L. Onsager, Philos. Mag. 43, 1006 (1952).

    Article  Google Scholar 

  54. L. A. Fal’kovskii, Sov. Phys. JETP 22, 423 (1965).

    Google Scholar 

  55. M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).

    Article  ADS  Google Scholar 

  56. A. Yu. Ozerin and L. A. Falkovsky, Phys. Rev. B 85, 205143 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Z. Alisultanov.

Additional information

Original Russian Text © Z.Z. Alisultanov, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 5, pp. 986–1001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alisultanov, Z.Z. Electronic properties of a Weyl semimetal in crossed magnetic and electric fields. J. Exp. Theor. Phys. 125, 836–849 (2017). https://doi.org/10.1134/S1063776117110012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117110012

Navigation