Skip to main content
Log in

Majorana mode stacking, robustness and size effect in cylindrical nanowires

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We discuss the robustness of Majorana edge modes in a finite quantum nanowire of cylindrical shape. The nanowire is modeled as a bidimensional cylindrical shell of semiconductor material with proximity-induced superconductivity and an intrinsic Rashba spin-orbit interaction. The latter is characterized by effective electric and magnetic fields in transverse direction of the nanowire. An applied external magnetic field pointing in an arbitrary orientation is also assumed. The numerical diagonalization of the Hamiltonian allows us to study the spectrum of the nanowire for different experimental configurations. The Majorana modes prove robust against tilting of the magnetic field away from the cylinder longitudinal axis, if the tilt direction is perpendicular to the effective spin-orbit magnetic field, but fragile otherwise. On the other hand, we find an increasing number of Majorana modes in the same cylinder edge for increasing values of the nanowire radius. We refer to this phenomenon as “stacking effect” and it occurs due to the orthogonality between Majorana mode wave functions. In this manner, different Majoranas take complementary positions on the nanowire surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.Y. Kitaev, Phys. Usp. 44, 131 (2001)

    Article  ADS  Google Scholar 

  2. F. Wilczek, Nat. Phys. 5, 614 (2009)

    Article  Google Scholar 

  3. P.W. Brouwer, Science 336, 989 (2012)

    Article  ADS  Google Scholar 

  4. J.K. Pachos, Introduction to topological Quantum Computation (Cambridge University Press, Cambridge, 2012)

  5. C. Nayak et al., Rev. Mod. Phys. 80, 1083 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. E. Majorana, Nuovo Cim. 14, 171 (1937)

    Article  Google Scholar 

  7. R.M. Lutchyn, J.D. Sau, S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010)

    Article  ADS  Google Scholar 

  8. Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010)

    Article  ADS  Google Scholar 

  9. T.D. Stanescu, R.M. Lutchyn, S. Das Sarma, Phys. Rev. B 84, 144522 (2011)

    Article  ADS  Google Scholar 

  10. K. Flensberg, Phys. Rev. B 82, 180516 (2010)

    Article  ADS  Google Scholar 

  11. A.C. Potter, P.A. Lee, Phys. Rev. Lett. 105, 227003 (2010)

    Article  ADS  Google Scholar 

  12. A.C. Potter, P.A. Lee, Phys. Rev. B 83, 094525 (2011)

    Article  ADS  Google Scholar 

  13. S. Gangadharaiah et al., Phys. Rev. Lett. 107, 036801 (2011)

    Article  ADS  Google Scholar 

  14. R. Egger, A. Zazunov, A.L. Yeyati, Phys. Rev. Lett. 105, 136403 (2010)

    Article  ADS  Google Scholar 

  15. A. Zazunov, A.L. Yeyati, R. Egger, Phys. Rev. B 84, 165440 (2011)

    Article  ADS  Google Scholar 

  16. J. Klinovaja, S. Gangadharaiah, D. Loss, Phys. Rev. Lett. 108, 196804 (2012)

    Article  ADS  Google Scholar 

  17. J. Klinovaja, D. Loss, Phys. Rev. B 86, 085408 (2012)

    Article  ADS  Google Scholar 

  18. J.S. Lim et al. Phys. Rev. B 86, 121103 (2012)

    Article  ADS  Google Scholar 

  19. J.S. Lim, R. López, L. Serra, New J. Phys. 14, 083020 (2012)

    Article  ADS  Google Scholar 

  20. J.S. Lim, R. López, L. Serra, Europhys. Lett. 103, 37004 (2013)

    Article  ADS  Google Scholar 

  21. L. Serra, Phys. Rev. B 87, 075440 (2013)

    Article  ADS  Google Scholar 

  22. V. Mourik et al., Science 336, 1003 (2012)

    Article  ADS  Google Scholar 

  23. A. Das et al., Nat. Phys. 8, 887 (2012)

    Article  Google Scholar 

  24. H.O.H. Churchill et al., Phys. Rev. B 87, 241401 (2013)

    Article  ADS  Google Scholar 

  25. M.T. Deng et al., Nano Lett. 12, 6414 (2012)

    Article  ADS  Google Scholar 

  26. A.D.K. Finck et al., Phys. Rev. Lett. 110, 126406 (2013)

    Article  ADS  Google Scholar 

  27. E. Prada, P. San-José, R. Aguado, Phys. Rev. B 86, 180503(R) (2012)

    Article  ADS  Google Scholar 

  28. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)

    Article  ADS  Google Scholar 

  29. N. Shaji et al., Appl. Phys. Lett. 90, 042101 (2007)

    Article  ADS  Google Scholar 

  30. O. Gül et al., Phys. Rev. B 89, 045417 (2014)

    Article  ADS  Google Scholar 

  31. M. Trushin, J. Schliemann, New J. Phys. 9, 346 (2007)

    Article  ADS  Google Scholar 

  32. A. Bringer, T. Schäpers, Phys. Rev. B 83, 115305 (2011)

    Article  ADS  Google Scholar 

  33. W. Shockley, Phys. Rev. 56, 317 (1939)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Llorenç Serra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osca, J., López, R. & Serra, L. Majorana mode stacking, robustness and size effect in cylindrical nanowires. Eur. Phys. J. B 87, 84 (2014). https://doi.org/10.1140/epjb/e2014-41091-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-41091-8

Keywords

Navigation