Skip to main content
Log in

Quantum interference effects in Bi2Se3 topological insulator nanowires with variable cross-section lengths

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Stimulated by the recent realization of three dimensional topological insulator nanowire interferometers, a theoretical analysis of quantum interference effects on the low energy spectrum of Bi2Se3 nanowires is presented. The electronic properties are analyzed in nanowires with circular, square and rectangular cross-sections starting from a continuum three dimensional model with particular emphasis on magnetic and geometrical effects. The theoretical study is based on numerically exact diagonalizations of the discretized model for all the geometries. In the case of the cylindrical wire, an approximate analytical solution of the continuum model is also discussed. Although a magnetic field corresponding to half quantum flux is expected to close the band gap induced by Berry phase, in all the studied geometries with finite area cross-sections, the gap closes for magnetic fields typically larger than those expected. Furthermore, unexpectedly, due to geometrical quantum interference effects, for a rectangular wire with a sufficiently large aspect ratio and smaller side ranging from 50 Å and 100 Å, the gap closes for a specific finite area cross-section without the application of a magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  2. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2006)

    Article  ADS  Google Scholar 

  3. L. Fu, C.L. Kane, E.J. Mele, Phys. Rev. Lett. 98, 106803 (2007)

    Article  ADS  Google Scholar 

  4. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  5. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  6. S.-Q. Shen, Topological Insulators – Dirac Equation in Condensed Matters (Springer, 2012)

  7. B.A. Bernevig, Topological Insulators and Topological Superconductors (Princeton University Press, 2013)

  8. D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, L. Patthey, J. Osterwalder, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, M.Z. Hasan, Nature 460, 1101 (2009)

    Article  ADS  Google Scholar 

  9. P. Roushan, J. Seo, C.V. Parker, Y.S. Hor, D. Hsieh, D. Qian, A. Richardella, M.Z. Hasan, R.J. Cava, A. Yazdani, Nature 460, 1106 (2009)

    Article  ADS  Google Scholar 

  10. D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J.H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C.L. Kane, Y.S. Hor, R.J. Cava, M.Z. Hasan, Science 323, 919 (2009)

    Article  ADS  Google Scholar 

  11. H. Zhang, C.-X. Liu, X.-L. Qi, Xi Dai, Z. Fang, S.-C. Zhang, Nat. Phys. 5, 438 (2009)

    Article  Google Scholar 

  12. Y.A. Bychkov, E.I. Rashba, J. Phys. C 17, 6039 (1984)

    Article  ADS  Google Scholar 

  13. V. Marigliano Ramaglia, D. Bercioux, V. Cataudella, G. De Filippis, C.A. Perroni, F. Ventriglia, Eur. Phys. J. B 36, 365 (2003)

    Article  ADS  Google Scholar 

  14. V. Marigliano Ramaglia, D. Bercioux, V. Cataudella, G. De Filippis, C.A. Perroni, J. Phys.: Condens. Matter 16, 9143 (2004)

    ADS  Google Scholar 

  15. H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, Y. Cui, Nat. Mater. 9, 225 (2010)

    ADS  Google Scholar 

  16. S.S. Hong, Y. Zhang, J.J. Cha, X.-L. Qi, Yi Cui, Nano Lett. 14, 2815 (2014)

    Article  ADS  Google Scholar 

  17. J. Dufouleur, L. Veyrat, A. Teichgräber, S. Neuhaus, C. Nowka, S. Hampel, J. Cayssol, J. Schumann, B. Eichler, O.G. Schmidt, B. Büchner, R. Giraud, Phys. Rev. Lett. 110, 186806 (2013)

    Article  ADS  Google Scholar 

  18. L. Zhang, J. Zhuang, Y. Xing, J. Li, J. Wang, H. Guo, Phys. Rev. B 89, 245107 (2014)

    Article  ADS  Google Scholar 

  19. J.H. Bardarson, P.W. Brouwer, J.E. Moore, Phys. Rev. Lett. 105, 156803 (2010)

    Article  ADS  Google Scholar 

  20. Yi Zhang, A. Vishwanath, Phys. Rev. Lett. 105, 206601 (2010)

    Article  ADS  Google Scholar 

  21. C.A. Perroni, D. Bercioux, V. Marigliano Ramaglia, V. Cataudella, J. Phys.: Condens. Matter 19, 186227 (2007)

    ADS  Google Scholar 

  22. V. Marigliano Ramaglia, V. Cataudella, G. De Filippis, C.A. Perroni, Phys. Rev. B 73, 155328 (2006)

    Article  ADS  Google Scholar 

  23. D. Bercioux, P. Lucignano, Rep. Prog. Phys. 78, 106001 (2015)

    Article  ADS  Google Scholar 

  24. A. Kundu, A. Zazunov, A. Levy Yeyati, T. Martin, R. Egger, Phys. Rev. B 83, 125429 (2011)

    Article  ADS  Google Scholar 

  25. K.-I. Imura, Y. Takane, A. Tanaka, Phys. Rev. B 84, 195406 (2011)

    Article  ADS  Google Scholar 

  26. O. Deb, A. Soori, D. Sen, J. Phys.: Condens. Matter 26, 315009 (2014)

    ADS  Google Scholar 

  27. D. Kong, J.C. Randel, H. Peng, J.J. Cha, S. Meister, K. Lai, Y. Chen, Z.-X. Shen, H.C. Manoharan, Y. Cui, Nano Lett. 10, 329 (2010)

    Article  ADS  Google Scholar 

  28. W.-Y. Shan, H.-Z. Lu, S.-Q. Shen, New J. Phys. 12, 043048 (2010)

    Article  ADS  Google Scholar 

  29. Z. Ringel, Y.E. Kraus, A. Stern, Phys. Rev. B 86, 045102 (2012)

    Article  ADS  Google Scholar 

  30. W. Zhang, R. Yu, H.-J. Zhang, X. Dai, Z. Fang, New J. Phys. 12, 065013 (2010)

    Article  ADS  Google Scholar 

  31. L.J. Slater, Confluent Hypergeometric Functions (Cambridge University Press, 1960)

  32. B. Dwork, Trans. Amer. Math. Soc. 285, 497 (1984)

    MathSciNet  Google Scholar 

  33. G. Arfken, Mathematical Methods for Physicists, 3rd edn. (Academic Press, Orlando, 1985)

  34. H. Tang, D. Liang, R.L.J. Qiu, X.P.A. Gao, ACS Nano 5, 7510 (2011)

    Article  Google Scholar 

  35. F.W. Chen, L.A. Jauregui, Y. Tan, M. Manfra, G. Klimeck, Y.P. Chen, T. Kubis, Appl. Phys. Lett. 107, 121605 (2015)

    Article  ADS  Google Scholar 

  36. A. Richardella, A. Kandala, J.S. Lee, N. Samarth, APL Mater. 3, 083303 (2015)

    Article  ADS  Google Scholar 

  37. H. Zhu, C.A. Richter, E. Zhao, J.E. Bonevich, W.A. Kimes, H.-J. Jang, H. Yuan, H. Li, A. Arab, O. Kirillov, J.E. Maslar, D.E. Ioannou, Q. Li, Sci. Rep. 3, 1757 (2013)

    ADS  Google Scholar 

  38. K.L. Chiu, Y. Xu, arXiv:1601.00986v1 (2016)

  39. S. Cho, B. Dellabetta, R. Zhong, J. Schneeloch, T. Liu, G. Gu, M.J. Gilbert, N. Mason, Nat. Commun. 6, 7634 (2015)

    Article  ADS  Google Scholar 

  40. Y. Xu, Z. Gan, S.-C. Zhang, Phys. Rev. Lett. 112, 226801 (2014)

    Article  ADS  Google Scholar 

  41. J. Gooth, J.G. Gluschke, R. Zierold, M. Leijnse, H. Linke, K. Nielsch, Semicond. Sci. Technol. 30, 015015 (2015)

    Article  ADS  Google Scholar 

  42. A. Nocera, C.A. Perroni, V. Marigliano Ramaglia, V. Cataudella, Phys. Rev. B 86, 035420 (2012)

    Article  ADS  Google Scholar 

  43. G. Iadonisi, V. Cataudella, D. Ninno, M.L. Chiofalo, Phys. Lett. A 196, 359 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Antonio Perroni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iorio, P., Perroni, C. & Cataudella, V. Quantum interference effects in Bi2Se3 topological insulator nanowires with variable cross-section lengths. Eur. Phys. J. B 89, 97 (2016). https://doi.org/10.1140/epjb/e2016-70041-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70041-7

Keywords

Navigation