Skip to main content
Log in

Statistical mechanics of two-dimensional point vortices: relaxation equations and strong mixing limit

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We complement the literature on the statistical mechanics of point vortices in two-dimensional hydrodynamics. Using a maximum entropy principle, we determine the multi-species Boltzmann-Poisson equation and establish a form of Virial theorem. Using a maximum entropy production principle (MEPP), we derive a set of relaxation equations towards statistical equilibrium. These relaxation equations can be used as a numerical algorithm to compute the maximum entropy state. We mention the analogies with the Fokker-Planck equations derived by Debye and Hückel for electrolytes. We then consider the limit of strong mixing (or low energy). To leading order, the relationship between the vorticity and the stream function at equilibrium is linear and the maximization of the entropy becomes equivalent to the minimization of the enstrophy. This expansion is similar to the Debye-Hückel approximation for electrolytes, except that the temperature is negative instead of positive so that the effective interaction between like-sign vortices is attractive instead of repulsive. This leads to an organization at large scales presenting geometry-induced phase transitions, instead of Debye shielding. We compare the results obtained with point vortices to those obtained in the context of the statistical mechanics of continuous vorticity fields described by the Miller-Robert-Sommeria (MRS) theory. At linear order, we get the same results but differences appear at the next order. In particular, the MRS theory predicts a transition between sinh and tanh-like ωψ relationships depending on the sign of Ku − 3 (where Ku is the Kurtosis) while there is no such transition for point vortices which always show a sinh-like ωψ relationship. We derive the form of the relaxation equations in the strong mixing limit and show that the enstrophy plays the role of a Lyapunov functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.H. Chavanis, Statistical Mechanics of Two-dimensional vortices and stellar systems, in Dynamics and Thermodynamics of Systems with Long Range Interactions, edited by T. Dauxois, S. Ruffo, E. Arimondo, and M. Wilkens, Lecture Notes in Physics (Springer, 2002), Vol. 602

  2. R. Balescu, Statistical Mechanics of Charged Particles (Wiley, 1963)

  3. J. Binney, S. Tremaine, Galactic Dynamics (Princeton Series in Astrophysics, 1987)

  4. A. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480, 57 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. L. Onsager, Nuovo Cimento, Suppl. 6, 279 (1949)

    Article  MathSciNet  Google Scholar 

  6. P. Debye, E. Hückel, Phys. Z. 24, 185 (1923)

    MATH  Google Scholar 

  7. P. Debye, E. Hückel, Phys. Z. 24, 305 (1923)

    Google Scholar 

  8. P.H. Chavanis, Physica A 391, 3657 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  9. C. Marchioro, M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids (Springer, New York, 1994)

  10. J. Miller, Phys. Rev. Lett. 65, 2137 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. R. Robert, J. Sommeria, J. Fluid Mech. 229, 291 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, 101 (1967)

    ADS  Google Scholar 

  13. P.H. Chavanis, J. Sommeria, R. Robert, ApJ 471, 385 (1996)

    Article  ADS  Google Scholar 

  14. G. Joyce, D. Montgomery, J. Plasma Phys. 10, 107 (1973)

    Article  ADS  Google Scholar 

  15. P.H. Chavanis, Phys. Rev. E 64, 026309 (2001)

    Article  ADS  Google Scholar 

  16. R. Kawahara, H. Nakanishi, J. Phys. Soc. Jpn 75, 054001 (2006)

    Article  ADS  Google Scholar 

  17. R. Kawahara, H. Nakanishi, J. Phys. Soc. Jpn 76, 074001 (2007)

    Article  ADS  Google Scholar 

  18. T. Padmanabhan, Phys. Rep. 188, 285 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. D. Montgomery, G. Joyce, Phys. Fluids 17, 1139 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Kida, J. Phys. Soc. Jpn 39, 1395 (1975)

    Article  ADS  Google Scholar 

  21. Y.B. Pointin, T.S. Lundgren, Phys. Fluids 19, 1459 (1976)

    Article  ADS  MATH  Google Scholar 

  22. T.S. Lundgren, Y.B. Pointin, J. Stat. Phys. 17, 323 (1977)

    Article  ADS  Google Scholar 

  23. E. Caglioti, P.L. Lions, C. Marchioro, M. Pulvirenti, Commun. Math. Phys. 143, 501 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. M. Kiessling, Commun. Pure Appl. Math. 47, 27 (1993)

    Article  MathSciNet  Google Scholar 

  25. G.L. Eyink, H. Spohn, J. Stat. Phys. 70, 833 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. E. Caglioti, P.L. Lions, C. Marchioro, M. Pulvirenti, Commun. Math. Phys. 174, 229 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. M. Kiessling, J. Lebowitz, Lett. Math. Phys. 42, 43 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. K. Sawada, T. Suzuki, Theoret. Appl. Mech. Jpn 56, 285 (2008)

    Google Scholar 

  29. R. Robert, J. Sommeria, Phys. Rev. Lett. 69, 2776 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. J. Sopik, C. Sire, P.H. Chavanis, Phys. Rev. E 72, 026105 (2005)

    Article  ADS  Google Scholar 

  31. E. Keller, L.A. Segel, J. Theor. Biol. 26, 399 (1970)

    Article  MATH  Google Scholar 

  32. C.E. Leith, Phys. Fluids 27, 1388 (1984)

    Article  ADS  MATH  Google Scholar 

  33. R.H. Kraichnan, J. Fluid Mech. 67, 155 (1975)

    Article  ADS  MATH  Google Scholar 

  34. P.H. Chavanis, J. Sommeria, J. Fluid Mech. 314, 267 (1996)

    Article  ADS  MATH  Google Scholar 

  35. P.K. Newton, The N-Vortex Problem: Analytical Techniques, in Applied Mathematical Sciences (Springer-Verlag, Berlin, 2001), Vol. 145

  36. G. Kirchhoff, in Lectures in Mathematical Physics, Mechanics (Teubner, Leipzig, 1877)

  37. J. Fröhlich, D. Ruelle, Commun. Math. Phys. 87, 1 (1982)

    Article  ADS  MATH  Google Scholar 

  38. D. Ruelle, J. Stat. Phys. 61, 865 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  39. S.F. Edwards, J.B. Taylor, Proc. R. Soc. Lond. A 336, 257 (1974)

    Article  ADS  Google Scholar 

  40. P.H. Chavanis, Physica A 387, 6917 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  41. P.H. Chavanis, Eur. Phys. J. Plus 127, 159 (2012)

    Article  Google Scholar 

  42. J.G. Esler, T.L. Ashbee, N.R. McDonald, Phys. Rev. E 88, 012109 (2013)

    Article  ADS  Google Scholar 

  43. P.H. Chavanis, J. Sommeria, J. Fluid Mech. 356, 259 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. P.H. Chavanis, Eur. Phys. J. B 70, 73 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. R. Ellis, K. Haven, B. Turkington, J. Stat. Phys. 101, 999 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  46. P.H. Chavanis, Int. J. Mod. Phys. B 20, 3113 (2006)

    Article  ADS  MATH  Google Scholar 

  47. M. Kiessling, Lett. Math. Phys. 34, 49 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. L. Onsager, Phys. Rev. 37, 405 (1931)

    Article  ADS  Google Scholar 

  49. P.H. Chavanis, Eur. Phys. J. B 62, 179 (2008)

    Article  ADS  MATH  Google Scholar 

  50. P.H. Chavanis, Phys. Rev. E 58, R1199 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  51. P.H. Chavanis, Int. J. Mod. Phys. B 26, 1241002 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  52. S. Chandrasekhar, ApJ 97, 255 (1943)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. W. Nernst, Z. Phys. Chem. 2, 613 (1888)

    Google Scholar 

  54. W. Nernst, Z. Phys. Chem. 4, 129 (1889)

    Google Scholar 

  55. M. Planck, Ann. Phys. 39, 161 (1890)

    Article  Google Scholar 

  56. A. Naso, P.H. Chavanis, B. Dubrulle, Eur. Phys. J. B 77, 187 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  57. J.B. Taylor, M. Borchardt, P. Helander, Phys. Rev. Lett. 102, 124505 (2009)

    Article  ADS  Google Scholar 

  58. H.J.H. Clercx, S.R. Maassen, G.J.F. van Heijst, Phys. Rev. Lett. 80, 5129 (1998)

    Article  ADS  Google Scholar 

  59. A. Naso, S. Thalabard, G. Collette, P.H. Chavanis, B. Dubrulle, J. Stat. Mech 6, 06019 (2010)

    Article  Google Scholar 

  60. S. Thalabard, B. Dubrulle, F. Bouchet, arXiv:1306.1081 (2013)

  61. A. Venaille, F. Bouchet, J. Stat. Phys. 143, 346 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. A. Naso, P.H. Chavanis, B. Dubrulle, Eur. Phys. J. B 80, 493 (2011)

    Article  ADS  Google Scholar 

  63. C. Herbert, B. Dubrulle, P.H. Chavanis, D. Paillard, Phys. Rev. E 85, 056304 (2012)

    Article  ADS  Google Scholar 

  64. C. Herbert, B. Dubrulle, P.H. Chavanis, D. Paillard, J. Stat. Mech. 5, 05023 (2012)

    Article  Google Scholar 

  65. A. Venaille, F. Bouchet, Phys. Rev. Lett. 102, 104501 (2009)

    Article  ADS  Google Scholar 

  66. P.H. Chavanis, Phys. Rev. E 68, 036108 (2003)

    Article  ADS  Google Scholar 

  67. P.H. Chavanis, A. Naso, B. Dubrulle, Eur. Phys. J. B 77, 167 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  68. F. Bouchet, A. Venaille, Phys. Rep. 515, 227 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  69. R.S. Ellis, Large Deviations and Statistical Mechanics (Springer, New York, 1985)

  70. H. Touchette, Phys. Rep. 478, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  71. T. Ashbee, Ph.D. Thesis, University College London, 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Henri Chavanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavanis, PH. Statistical mechanics of two-dimensional point vortices: relaxation equations and strong mixing limit. Eur. Phys. J. B 87, 81 (2014). https://doi.org/10.1140/epjb/e2014-40869-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-40869-x

Keywords

Navigation