Skip to main content
Log in

Magnetic annealing of the ion-beam sputtered IrMn/CoFeB bilayers – positive exchange bias and coercivity behaviour

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The effect of optimum dilution of antiferromagnetic (AF)/ferromagnetic (FM) interface necessary for observance of positive exchange bias in ion-beam sputtered Si/Ir22Mn78 (t AF = 12, 18, 24 nm)/Co20Fe60B20(t FM = 6,9,15 nm) exchange coupled bilayers is investigated by magnetic annealing at 380, 420 and 460 °C for 1 h at 5 × 10-6 Torr in presence of 500 Oe magnetic field. While the coercivity of the exchange coupled FM layer decreases with the increase in annealing temperature irrespective of the value of t AF or t FM, the hysteresis loops however shift by ≈+ 10 Oe whenever the coercivity drops in the 10–15 Oe range. This is consistent with the phase diagram of exchange bias field and coercivity derived from Meiklejohn and Bean model. The X-ray diffraction and X-ray reflectivity measurements confirmed that the texture, grain size and interface roughness of IrMn/CoFeB bilayers are thickness dependent and are correlated to the observed magnetic response of the bilayers. The results establish that optimum dilution of the IrMn/CoFeB interface by thermally diffused Mn-spins is necessary in inducing the effective coupling between the IrMn domains and diluted CoFeB layer. It is further shown that the annealing temperature required for the optimum dilution of the CoFeB interface critically depends on the thickness of the layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956)

    Article  ADS  Google Scholar 

  2. W.H. Meiklejohn, C.P. Bean, Phys. Rev. 105, 904 (1957)

    Article  ADS  Google Scholar 

  3. A.E. Berkowitz, K. Takano, J. Magn. Magn. Mater. 200, 552 (1999)

    Article  ADS  Google Scholar 

  4. Y. Li, T.X. Wang, H.Y. Liu, X.W. Xu, Z.M. Lu, Y.X. Li, Eur. Phys. J. B 66, 369 (2008)

    Article  ADS  Google Scholar 

  5. R.L. Stamps, J. Phys. D 33, R247 (2000)

    Article  ADS  Google Scholar 

  6. A. Maitre, D. Ledue, R. Patte, J. Magn. Magn. Mater. 324, 403 (2012)

    Article  ADS  Google Scholar 

  7. L. Wang, B. You, S.J. Yuan, J. Du, W.Q. Zou, A. Hu, S.M. Zhou, Phys. Rev. B 66, 184411 (2002)

    Article  ADS  Google Scholar 

  8. H. Fulara, M. Raju, S. Chaudhary, S.C. Kashyap, D.K. Pandya, in Technical Proceedings of the 2010 NSTI Nanotechnology Conference and Expo, Vol. 1, pp. 133–136

  9. C. Leighton, J. Nogues, H. Suhl, I.K. Schuller, Phys. Rev. B 60, 12837 (1999)

    Article  ADS  Google Scholar 

  10. J. Nogues, D. Lederman, T.J. Moran, I.K. Schuller, Phys. Rev. Lett. 76, 4624 (1996)

    Article  ADS  Google Scholar 

  11. J. Nogues, C. Leighton, I.K. Schuller, Phys. Rev. B 61, 1315 (2000)

    Article  ADS  Google Scholar 

  12. D.Z. Yang, J. Du, L. Sun, X.S. Wu, X.X. Zhang, S.M. Zhou, Phys. Rev. B 71, 144417 (2005)

    Article  ADS  Google Scholar 

  13. B. Altuncevahir, A.R. Koymen, J. Magn. Magn. Mater. 261, 424 (2003)

    Article  ADS  Google Scholar 

  14. S.K. Mishra, F. Radu, H.A. Durr, W. Eberhardt, Phys. Rev. Lett. 102, 177208 (2009)

    Article  ADS  Google Scholar 

  15. H. Fulara, S. Chaudhary, S.C. Kashyap, D.K. Pandya, J. Appl. Phys. 110, 093916 (2011)

    Article  ADS  Google Scholar 

  16. H. Fulara, S. Chaudhary, S.C. Kashyap, D.K. Pandya, Nanosci. Nanotechnol. Lett. 4, 651 (2012)

    Article  Google Scholar 

  17. J. van Driel, F.R. de Boer, K.-M.H. Lenssen, R. Coehoorn, J. Appl. Phys. 88, 975 (2000)

    Article  ADS  Google Scholar 

  18. K. O’Grady, L.E. Fernandez-Outon, G. Vallejo-Fernandez, J. Magn. Magn. Mater. 322, 883 (2010)

    Article  ADS  Google Scholar 

  19. A. Sakuma, K. Fukamichi, K. Sasao, R.Y. Umetsu, Phys. Rev. B 67, 224420 (2003)

    Article  ADS  Google Scholar 

  20. J. Yang, S. Cardoso, P.P. Freitas, T. Devolder, M. Ruehrig, Appl. Phys. Lett. 97, 132502 (2010)

    Article  ADS  Google Scholar 

  21. J. Hayakawa, S. Ikeda, Y.M. Lee, F. Matsukura, H. Ohno, Appl. Phys. Lett. 89, 232510 (2006)

    Article  ADS  Google Scholar 

  22. Y.M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, H. Ohno, Appl. Phys. Lett. 89, 042506 (2006)

    Article  ADS  Google Scholar 

  23. S. Ikeda J. Hayakawa, Y. Ashizawa, Y.M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, H. Ohno, Appl. Phys. Lett. 93, 082508 (2008)

    Article  ADS  Google Scholar 

  24. Y.M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, H. Ohno, Appl. Phys. Lett. 90, 212507 (2007)

    Article  ADS  Google Scholar 

  25. M. Kodzuka, T. Ohkubo, K. Hono, S. Ikeda, H.D. Gan, H. Ohno, J. Appl. Phys. 111, 043913 (2012)

    Article  ADS  Google Scholar 

  26. N.P. Aley, K. O’Grady, J. Appl. Phys. 109, 07D719 (2011)

    Article  Google Scholar 

  27. M. Tsunoda, K. Imakita, M. Naka, M. Takahashi, J. Magn. Magn. Mater. 304, 59 (2006)

    Article  ADS  Google Scholar 

  28. H. Fulara, S. Chaudhary, S.C. Kashyap, J. Appl. Phys. 113, 043914 (2013)

    Article  ADS  Google Scholar 

  29. H. Fulara, S. Chaudhary, S.C. Kashyap, Appl. Phys. Lett. 101, 142408 (2012)

    Article  ADS  Google Scholar 

  30. M. Raju, S. Chaudhary, D.K. Pandya, Appl. Phys. Lett. 98, 212506 (2011)

    Article  ADS  Google Scholar 

  31. M. Raju, S. Chaudhary, D.K. Pandya, J. Magn. Magn. Mater. 332, 109 (2013)

    Article  ADS  Google Scholar 

  32. Braj Bhusan Singh, S. Chaudhary, J. Appl. Phys. 112, 063906 (2012)

    Article  ADS  Google Scholar 

  33. J. Spray, U. Nowak, J. Phys. D 39, 4536 (2006)

    Article  ADS  Google Scholar 

  34. K.D. Usadel, R.L. Stamps, Phys. Rev. B 82, 094432 (2010)

    Article  ADS  Google Scholar 

  35. X.L. Tang, H. Wu Zhang, H. Su, Y.L. Jing, Z. Yong Zhong, Phys. Rev. B 81, 052401 (2010)

    Article  ADS  Google Scholar 

  36. G. Scholten, K.D. Usadel, U. Nowak, Phys. Rev. B 71, 064413 (2005)

    Article  ADS  Google Scholar 

  37. C. Leighton, J. Nogues, B.J. Jonsson-Akerman, I.K. Schuller, Phys. Rev. Lett. 84, 3466 (2000)

    Article  ADS  Google Scholar 

  38. O. Rader, W. Gudat, D. Schmitz, C. Carbone, W. Eberhardt, Phys. Rev. B 56, 5053 (1997)

    Article  ADS  Google Scholar 

  39. S. Bouarab, H. Nait-Laziz, M.A. Khan, C. Demangeat, H. Dreyssé, M. Benakki, Phys. Rev. B 52, 10127 (1995)

    Article  ADS  Google Scholar 

  40. H. Ohldag, A. Scholl, F. Nolting, E. Arenholz, S. Maat, A.T. Young, M. Carey, J. Stohr, Phys. Rev. Lett. 91, 017203 (2003)

    Article  ADS  Google Scholar 

  41. L. Wang, B. You, S.J. Yuan, J. Du, W.Q. Zou, A. Hu, S.M. Zhou, Phys. Rev. B66 , 184411 (2002)

  42. Handbook of Spin Transport and Magnetism, edited by E.Y. Tsymbal, I. Zutic (CRC press, Taylor & Francis group, Boca Raton, 2012), pp. 40–41

  43. H. Xi, R.M. White, Phys. Rev. B 61, 80 (2000)

    Article  ADS  Google Scholar 

  44. D.D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, K. Ando, Appl. Phys. Lett. 86, 092502 (2005)

    Article  ADS  Google Scholar 

  45. W.G. Wang, J. Jordan-sweet, G.X. Miao, C. Ni, A.K. Rumaiz, L.R. Shah, X. Fan, P. Parsons, R. Stearrett, E.R. Nowak, J.S. Moodera, J.Q. Xiao, Appl. Phys. Lett. 95, 242501 (2009)

    Article  ADS  Google Scholar 

  46. R.M. Oksuzoglu, M. Yıldırım, H. Cınar, E. Hildebrandt, L. Alff, J. Magn. Magn. Mater. 323, 1827 (2011)

    Article  ADS  Google Scholar 

  47. J. Geshev, T. Dias, S. Nicolodi, R. Cichelero, A. Harres, J.J.S. Acuna, L.G. Pereira, J.E. Schmidt, C. Deranlot, F. Petroff, J. Phys. D 44, 095002 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Raju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raju, M., Chaudhary, S. & Pandya, D. Magnetic annealing of the ion-beam sputtered IrMn/CoFeB bilayers – positive exchange bias and coercivity behaviour. Eur. Phys. J. B 86, 491 (2013). https://doi.org/10.1140/epjb/e2013-40562-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40562-8

Keywords

Navigation