Skip to main content
Log in

Spatial structure enhanced cooperation in dissatisfied adaptive snowdrift game

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The dissatisfied adaptive snowdrift game (DASG) describes the adaptive actions driven by the level of dissatisfaction when two connected agents interact. We study the DASG in static networks both numerically and analytically. In a random network of uniform degree k, the system evolves into a homogeneous state consisting only of cooperators when the cost-to-benefit ratio r < r 0 and a mixed phase with the coexistence of cooperators and defectors when r > r 0, where r 0 is a threshold. For an infinite population, the large k limit corresponding to the well-mixed case is solved analytically. A theory is developed based on the pair approximation. It gives the frequency of cooperation f c and the densities of different pairs that are in good agreement with simulation results. The results revealed that f c is enhanced in networked populations with a finite k, when compared with the well-mixed case. The reasons that the theory works well for the present model are traced back to the weak spatial correlation implied by the random network and the fact that the adaptive actions in DASG are driven only by the strategy pairs. The results shed light on the class of models that the pair approximation is applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Axelrod, W.D. Hamilton, Science 211, 1390 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. R.M. May, Nature 292, 291 (1981)

    Article  ADS  Google Scholar 

  3. K. Brauchli, T. Killingback, M. Doebeli, J. Theor. Biol. 200, 405 (1999)

    Article  Google Scholar 

  4. G. Szabó, C. Hauert, Phys. Rev. Lett. 89, 118101 (2002)

    Article  ADS  Google Scholar 

  5. G. Szabó, J. Vukov, A. Szolnoki, Phys. Rev. E 72, 047107 (2005)

    Article  ADS  Google Scholar 

  6. M. Perc, New J. Phys. 8, 22 (2006)

    Article  ADS  Google Scholar 

  7. M.A. Nowak, Science 314, 1560 (2006)

    Article  ADS  Google Scholar 

  8. O. Gräser, C. Xu, P.M. Hui, New J. Phys. 13, 083015 (2011)

    Article  ADS  Google Scholar 

  9. Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 2, 269 (2012)

    Google Scholar 

  10. J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, Cambridge, 1998)

  11. M. Milinski, Nature 325, 433 (1987)

    Article  ADS  Google Scholar 

  12. M. Nakamaru, H. Matsuda, Y. Iwasa, J. Theor. Biol. 184, 65 (1997)

    Article  Google Scholar 

  13. V.C.L. Hutson, G.T. Vickers, Phil. Trans. R. Soc. Lond. B 348, 393 (1995)

    Article  ADS  Google Scholar 

  14. P. Grim, BioSystems 37, 3 (1996)

    Article  ADS  Google Scholar 

  15. F.C. Santos, J.M. Pacheco, Phys. Rev. Lett. 95, 098104 (2005)

    Article  ADS  Google Scholar 

  16. F.C. Santos, J.M. Pacheco, T. Lenaerts, Proc. Natl. Acad. Sci. USA 103, 3490 (2006)

    Article  ADS  Google Scholar 

  17. C.P. Roca, J.A. Cuesta, A. Sánchez, Phys. Rev. Lett. 97, 158701 (2006)

    Article  ADS  Google Scholar 

  18. M.A. Nowak, R.M. May, Nature 359, 826 (1992)

    Article  ADS  Google Scholar 

  19. M.A. Nowak, S. Bonhoeffer, R.M. May, Proc. Natl. Acad. Sci. USA 91, 4877 (1994)

    Article  ADS  MATH  Google Scholar 

  20. K. Lindgren, M.G. Nordahl, Physica D 75, 292 (1994)

    Article  ADS  MATH  Google Scholar 

  21. M. Perc, Phys. Rev. E 75, 022101 (2007)

    Article  ADS  Google Scholar 

  22. A. Cassar, Games Econ. Behav. 58, 209 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Hauert, M. Doebell, Nature 428, 643 (2004)

    Article  ADS  Google Scholar 

  24. C. Xu, P.M. Hui, D.F. Zheng, Physica A 385, 773 (2007)

    Article  ADS  Google Scholar 

  25. Y. Harada, Y. Iwasa, Res. Popul. Ecol. 36, 237 (1994)

    Article  Google Scholar 

  26. D.A. Rand, CWI Quarterly 12, 329 (1999)

    MATH  Google Scholar 

  27. S.P. Ellner, J. Theor. Biol. 210, 435 (2001)

    Article  Google Scholar 

  28. F. Fu, M.A. Nowak, C. Hauert, J. Theor. Biol. 266, 358 (2010)

    Article  MathSciNet  Google Scholar 

  29. X.-J. Chen, L. Wong, Europhys. Lett. 90, 38003 (2010)

    Article  ADS  Google Scholar 

  30. O. Kirchkamp, R. Nagel, Games Econ. Behav. 58, 269 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Grujić, C. Fosco, L. Araujo, J.A. Cuesta, A. Sánchez, PLoS One 5, e13749 (2010)

    Article  Google Scholar 

  32. C. Gracia-Lázaro, A. Ferrer, G. Ruiz, A. Tarancón, J.A. Cuesta, A. Sanchez, Y. Moreno, Proc. Natl. Acad. Sci. USA 109, 12922 (2012)

    Article  ADS  Google Scholar 

  33. J. Grujić, T. Röhl, D. Semmann, M. Milinski, A. Traulsen, PLoS One 7, e47718 (2012)

    Article  ADS  Google Scholar 

  34. S. Suri, D.J. Watts, PLoS One 6, e16836 (2011)

    Article  Google Scholar 

  35. A. Traulsen, D. Semmann, R.D. Sommerfeld, H.-J. Krambeck, M. Milinski, Proc. Natl. Acad. Sci. USA 107, 2962 (2010)

    Article  ADS  Google Scholar 

  36. O. Gräser, C. Xu, P.M. Hui, Europhys. Lett. 87, 38003 (2009)

    Article  ADS  Google Scholar 

  37. T. Killingback, M. Doebeli, Proc. R. Soc. Lond. B 263, 1135 (1996)

    Article  ADS  Google Scholar 

  38. D.F. Zheng, H.P. Yin, C.H. Chan, P.M. Hui, Europhys. Lett. 80, 18002 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  39. D.-L. Lu, H.-B. Zhang, J. Ge, C. Xu, Chin. Phys. Lett. 29, 088901 (2012)

    Article  ADS  Google Scholar 

  40. L.-X. Zhong, D.-F. Zheng, B. Zheng, C. Xu, P.M. Hui, Europhys. Lett. 76, 724 (2006)

    Article  ADS  Google Scholar 

  41. Y.-C. Ni, H.P. Yin, C. Xu, P.M. Hui, Eur. Phys. J. B 80, 233 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Xu, C. & Hui, P.M. Spatial structure enhanced cooperation in dissatisfied adaptive snowdrift game. Eur. Phys. J. B 86, 196 (2013). https://doi.org/10.1140/epjb/e2013-30997-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30997-2

Keywords

Navigation