Skip to main content
Log in

Long-wavelength spin-effective actions for the infinite U Hubbard model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The derivation of spin-effective actions is envisaged for the Hubbard model with infinite Coulomb repulsion for a very low concentration of holes with a slave fermion representation for electronic operators. For that, spinless charge variables (vacancies or holes) are integrated out and the resulting effective action at finite temperature is expanded up to the fourth order in the hopping term as proposed in reference [F.L. Braghin, A. Ferraz, E.A. Kochetov, Phys. Rev. B 78, 115109 (2008)] and, in a square lattice, the fourth order term is shown to have the structure of an extended gauge invariant J-Q model for localized spins. Two cases for which the resulting model is non trivial are analysed and they correspond basically to (1) holes hopping between two sub-lattices and (2) a time-dependent solution for the spinon variables in the square lattice. Whereas the first of these cases yields, at the leading order, an effective antiferromagnetic Heisenberg coupling for localized spins and the second one may lead either to ferromagnetic or antiferromagnetic effective coupling. In the second case, the ordering should appear rather in finite size domains and, although charge variables were integrated out, a subtle imbalance between charge degrees of freedom and spins should be at work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hubbard, Proc. Roy. Soc. London A 276, 238 (1963)

    Article  ADS  Google Scholar 

  2. H. Tasaki, Eur. Phys. J. B 64, 365 (2008)

    Article  ADS  Google Scholar 

  3. H. Tasaki, Prog. Theor. Phys. 99, 489 (1998)

    Article  ADS  Google Scholar 

  4. P. Fazekas, Philosophical Magazine Part B 76, 797 (1997)

    Article  Google Scholar 

  5. P. Fazekas, Lecture Notes on Electronic Correlation and Magnetism, Series in Modern Condensed Matter Physics (World Scientific, Singapore, 1999), Vol. 5

  6. V. Bach, E.H. Lieb, M.V. Travaglia, Rev. Math. Phys. 18, 519 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. E.H. Lieb, The Hubbard Model: Some Rigorous Results and Open Problems, Advances in Dynamical Systems and Quantum Physics (World Scientific, Singapore, 1993)

  8. A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer-Verlag, New York, 1998)

  9. E. Fradkin, Field theories of Condensed Matter Systems (Perseus Books, 1991)

  10. D. Jaksch, P. Zoller, Ann. Phys. 315, 52 (2005)

    Article  ADS  MATH  Google Scholar 

  11. J. von Stecher, E. Demler, M.D. Lukin, A.M. Rey, New J. Phys. 12, 055009 (2010)

    Article  ADS  Google Scholar 

  12. D. Yoshioka, J. Phys. Soc. Jpn 58, 1516 (1989)

    Article  ADS  Google Scholar 

  13. D.P. Arovas, A. Auerbach, Phys. Rev. B 38, 316 (1988)

    Article  ADS  Google Scholar 

  14. R. Kishore, A.K. Mishra, Physica B 403, 1344 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  15. A.K. Mishra, R. Kishore, Physica B 404, 3257 (2009)

    Article  ADS  Google Scholar 

  16. A.K. Mishra, R. Kishore, J. Phys.: Conf. Ser. 273, 012153 (2011)

    Article  ADS  Google Scholar 

  17. S. Östlund, M. Granath, Phys. Rev. Lett. 96, 066404 (2006)

    Article  ADS  Google Scholar 

  18. I. Ichinose, T. Matsui, Phys. Rev. Lett. 86, 942 (2001)

    Article  ADS  Google Scholar 

  19. I. Ichinose, T. Matsui, M. Onoda, Phys. Rev. B 64, 104516 (2001)

    Article  ADS  Google Scholar 

  20. C. Nayak, Phys. Rev. Lett. 85, 178 (2000)

    Article  ADS  Google Scholar 

  21. C. Kübert, A. Muramatsu, arXiv:cond-mat/9505105

  22. D. Boies, F.A. Jackson, A.-M.S. Tremblay, Int. J. Mod. Phys. B 9, 1001 (1995)

    Article  ADS  Google Scholar 

  23. H. Matsukawa, H. Fukuyama, J. Phys. Soc. Jpn 61, 1882 (1992)

    Article  ADS  Google Scholar 

  24. J. Kokalj, P. Prelovsek, Eur. Phys. J. B 63, 431 (2008)

    Article  ADS  Google Scholar 

  25. T. Koretsune, M. Ogata, Physica B 378-380, 323 (2006)

    Article  ADS  Google Scholar 

  26. F.L. Braghin, A. Ferraz, E.A. Kochetov, Phys. Rev. B 78, 115109 (2008)

    Article  ADS  Google Scholar 

  27. F.L. Braghin, Physica B 404, 3293 (2009)

    Article  ADS  Google Scholar 

  28. A.N. Kocharian, G.W. Fernando, K. Palandge, J.W. Davenport, Ultramicroscopy 109, 1066 (2009)

    Article  Google Scholar 

  29. Y.-F. Wang, C.-D. Gong, Z.D. Wang, Phys. Rev. Lett. 100, 037202 (2008)

    Article  ADS  Google Scholar 

  30. Sheng-Hao Li, Qian-Qian Shi, Huan-Qiang Zhou, arXiv: 1001.3343

  31. A. Muramatsu, R. Zeyher, Physica B 165-166, 989 (1990)

    Article  Google Scholar 

  32. A. Muramatsu, R. Zeyher, Nucl. Phys. B 346, 387 (1990)

    Article  ADS  Google Scholar 

  33. N. Dupuis, S. Pairault, Int. J. Mod. Phys. B 14, 2529 (2000)

    ADS  Google Scholar 

  34. A.W. Sandvik, Phys. Rev. Lett. 98, 227202 (2007)

    Article  ADS  Google Scholar 

  35. A. Ferraz, E. Kochetov, M. Mierzejewski, Phys. Rev. B 73, 064516 (2006)

    Article  ADS  Google Scholar 

  36. A.N. Kocharian, G.W. Fernando, K. Palandage, J.W. Davenport, Phys. Rev. B 78, 075431 (2008)

    Article  ADS  Google Scholar 

  37. M. Cuoco, J. Ranninger, Phys. Rev. B 70, 104509 (2004)

    Article  ADS  Google Scholar 

  38. A.G. Abanov, P.B. Wiegmann, Nucl. Phys. 570, 685 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Y. Nagaoka, Phys. Rev. 147, 392 (1966)

    Article  ADS  Google Scholar 

  40. J. Thouless, Proc. Phys. Soc. London 86, 893 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  41. D.J. Klein, Phys. Rev. B 8, 3452 (1973)

    Article  ADS  Google Scholar 

  42. G. Beni, T. Holstein, P. Pincus, Phys. Rev. B 8, 312 (1973)

    Article  ADS  Google Scholar 

  43. J.B. Sokoloff, Phys. Rev. B 2, 779 (1970)

    Article  ADS  Google Scholar 

  44. K.I. Kugel, A.L. Rakhmanov, A.O. Sboychakov, Physica B 403, 1616 (2008)

    Article  ADS  Google Scholar 

  45. E. Kochetov, A. Ferraz, R.T. Pepino, Phys. Rev. B 79, 115135 (2009)

    Article  ADS  Google Scholar 

  46. J.O. Haerter, B.S. Shastry, Phys. Rev. Lett. 95, 087202 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio L. Braghin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braghin, F.L. Long-wavelength spin-effective actions for the infinite U Hubbard model. Eur. Phys. J. B 86, 119 (2013). https://doi.org/10.1140/epjb/e2013-30894-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30894-8

Keywords

Navigation