Skip to main content
Log in

Recombination of two triplet excitons in conjugated polymers

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Combining the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model including interchain interactions and the extended Hubbard model (EHM), we investigate the recombination processes between two triplet excitons in conjugated polymers using a nonadiabatic evolution method. Due to the interchain coupling, the electron and/or hole in the two triplet excitons can exchange, and new species are formed. Depending on the interchain coupling and electron-electron interactions, it is found that the main product is excited-polaron state in which two electrons and a hole (or two holes and an electron) are bound together in a lattice deformation, with a small amount of singlet exciton, biexciton and bipolaron. In these products, the excited polaron, the singlet exciton and the biexciton can contribute to the emission. The results indicate that the recombination of two triplet excitons may play an important role in polymer light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Shinar, R. Shinar, J. Phys. D: Appl. Phys. 41, 133001 (2008)

    Article  ADS  Google Scholar 

  2. Z. Shuai, D. Beljonne, R.J. Silbey, J.L. Brédas, Phys. Rev. Lett. 84, 131 (2000)

    Article  ADS  Google Scholar 

  3. D. Beljonne, A. Ye, Z. Shuai, J.L. Brédas, Adv. Funct. Mater. 14, 684 (2004)

    Article  Google Scholar 

  4. W. Barford, Phys. Rev. B 70, 205204 (2004)

    Article  ADS  Google Scholar 

  5. K. Tandon, S. Ramasesha, S. Mazumdar, Phys. Rev. B 67, 045109 (2003)

    Article  ADS  Google Scholar 

  6. S. Karabunarliev, E.R. Bittner, Phys. Rev. Lett. 90, 057402 (2003)

    Article  ADS  Google Scholar 

  7. Y. Meng, X.J. Liu, B. Di, Z. An, J. Chem. Phys. 131, 244502 (2009)

    Article  ADS  Google Scholar 

  8. Z. Sun, Y. Li, S.J. Xie, Z. An, D.S. Liu, Phys. Rev. B 79, 201310(R) (2009)

    ADS  Google Scholar 

  9. L. Gu, S. Li, T.F. George, X. Sun, Phys. Status Solidi B 248, 1490 (2011)

    Article  ADS  Google Scholar 

  10. S. Li, G.P. Tong, T.F. George, J. Appl. Phys. 106, 074513 (2009)

    Article  ADS  Google Scholar 

  11. S. Sinha, C. Rothe, R. Guntner, U. Scherf, A.P. Monkman, Phys. Rev. Lett. 90, 127402 (2003)

    Article  ADS  Google Scholar 

  12. Y. Iwasaki, T. Osasa, M. Asahi, M. Matsumura, Y. Sakaguchi, T. Suzuki, Phys. Rev. B 74, 195209 (2006)

    Article  ADS  Google Scholar 

  13. M.A. Baldo, C. Adachi, S.R. Forrest, Phys. Rev. B 62, 10967 (2000)

    Article  ADS  Google Scholar 

  14. D.Y. Kondakov, J. Appl. Phys. 102, 114504 (2007)

    Article  ADS  Google Scholar 

  15. D.Y. Kondakov, J. Soc. Inform. Display 17, 137 (2009)

    Article  Google Scholar 

  16. A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, C. Adachi, Adv. Mater. 21, 4802 (2009)

    Article  Google Scholar 

  17. J. Partee, E.L. Frankevich, B. Uhlhorn, J. Shinar, Y. Ding, T.J. Barton, Phys. Rev. Lett. 82, 3673 (1999)

    Article  ADS  Google Scholar 

  18. B. Di, Y. Meng, Y.D. Wang, X.J. Liu, Z. An, J. Phys. Chem. B 115, 964 (2011)

    Article  Google Scholar 

  19. B. Di, Y. Meng, Y.D. Wang, X.J. Liu, Z. An, J. Phys. Chem. B 115, 9339 (2011)

    Article  Google Scholar 

  20. W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979)

    Article  ADS  Google Scholar 

  21. W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. B. 22, 2099 (1980)

    Article  ADS  Google Scholar 

  22. S.A. Brazovskii, N.N. Kirova, JETP Lett. 33, 4 (1981)

    ADS  Google Scholar 

  23. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  24. Y. Meng, B. Di, X.J. Liu, Z. An, C.Q. Wu, J. Chem. Phys. 128, 184903 (2008)

    Article  ADS  Google Scholar 

  25. R.W. Brankin, I. Gladwell, L.F. Shampine, RKSUITE: a suite of Runge-Kutta codes for the initial value problem for ODEs, Softreport 92-S1, Department of Mathematics, Southern Methodist University, Dallas, Texas, U.S.A, 1992; see www.netlib.org

  26. Z. An, C.Q. Wu, X. Sun, Phys. Rev. Lett. 93, 216407 (2004)

    Article  ADS  Google Scholar 

  27. A. Kadashchuk, V.I. Arkhipov, C.H. Kim, J. Shinar, D.W. Lee, Y.R. Hong, J.I. Jin, P. Heremans, H. Bässler, Phys. Rev. B 76, 235205 (2007)

    Article  ADS  Google Scholar 

  28. R. Matsunaga, K. Matsuda, Y. Kanemitsu, Phys. Rev. Lett. 106, 037404 (2011)

    Article  ADS  Google Scholar 

  29. J. Leng, S. Jeglinski, X. Wei, R.E. Benner, Z.V. Vardeny, F. Guo, S. Mazumdar, Phys. Rev. Lett. 72, 156 (1994)

    Article  ADS  Google Scholar 

  30. V. Klimov, D. McBranch, N. Barashkov, J. Ferraris, Phys. Rev. B 58, 7654 (1998)

    Article  ADS  Google Scholar 

  31. X.D. Wang, K. Chen, X. Sun, Synth. Met. 119, 221 (2001)

    Article  Google Scholar 

  32. Q.Y. Jiang, S. Li, T.F. George, X. Sun, Chin. Phys. Lett. 27, 107301 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Meng, B. Di or Z. An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Y., Di, B., Wang, Y.D. et al. Recombination of two triplet excitons in conjugated polymers. Eur. Phys. J. B 85, 415 (2012). https://doi.org/10.1140/epjb/e2012-30444-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30444-0

Keywords

Navigation