Skip to main content
Log in

Effect of the Pauli exclusion principle on the singlet exciton yield in conjugated polymers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Optical devices fabricated using conjugated polymer systems give rise to singlet exciton yields which are high compared to the statistically predicted estimate of 25 % obtained using simple recombination schemes. In this study, we evaluate the singlet exciton yield in conjugated polymers systems by fitting to a model that incorporates the Pauli exclusion principle. The rate equations which describe the exciton dynamics include quantum dynamical components (both density and spin-dependent) which arise during the spin-allowed conversion of composite intra-molecular excitons into loosely bound charge-transfer (CT) electron-hole pairs. Accordingly, a crucial mechanism by which singlet excitons are increased at the expense of triplet excitons is incorporated in this work. Non-ideal triplet excitons which form at high densities, are rerouted via the Pauli exclusion mechanism to form loosely bound CT states which subsequently convert to singlet excitons. Our derived expression for the yield in singlet exciton incorporates the purity measure and provides a realistic description of the carrier dynamics at high exciton densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Baldo, S. Forrest, Phys. Rev. B 62(16), 10958 (2000)

    Article  ADS  Google Scholar 

  2. J. Wilson, A. Dhoot, A. Seeley, M. Khan, A. Köhler, R. Friend, Nature 413(6858), 828 (2001)

    Article  ADS  Google Scholar 

  3. M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. Vardeny, Nature 409(6819), 494 (2001)

    Article  ADS  Google Scholar 

  4. R. Kersting, U. Lemmer, M. Deussen, H. Bakker, R. Mahrt, H. Kurz, V.I. Arkhipov, H. Bässler, E. Göbel, Phys. Rev. Lett. 73(10), 1440 (1994)

    Article  ADS  Google Scholar 

  5. T.Q. Nguyen, I.B. Martini, J. Liu, B.J. Schwartz, J. Phys. Chem. B 104(2), 237 (2000)

    Article  Google Scholar 

  6. R. Friend, R. Gymer, A. Holmes, J. Burroughes, R. Marks, C. Taliani, D. Bradley, D. Dos Santos, J. Bredas, M. Lögdlund et al., Nature 397(6715), 121 (1999)

    Article  ADS  Google Scholar 

  7. J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, A. Holmes, Nature 347(6293), 539 (1990)

    Article  ADS  Google Scholar 

  8. W. Barford, Phys. Rev. B 70(20), 205204 (2004)

    Article  ADS  Google Scholar 

  9. T.A. Skotheim, J. Reynolds, Conjugated Polymers: Theory, Synthesis, Properties, and Characterization (CRC press, Boca Raton, 2006)

    Google Scholar 

  10. S.A. Jenekhe et al., Excimers and exciplexes of conjugated polymers. Tech. rep, DTIC Document (1994)

  11. Z. Shuai, D. Beljonne, R. Silbey, J.L. Brédas, Phys. Rev. Lett. 84(1), 131 (2000)

    Article  ADS  Google Scholar 

  12. S. Günes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107(4), 1324 (2007)

    Article  Google Scholar 

  13. H. Sirringhaus, P. Brown, R. Friend, M.M. Nielsen, K. Bechgaard, B. Langeveld-Voss, A. Spiering, R.A. Janssen, E. Meijer, P. Herwig et al., Nature 401(6754), 685 (1999)

    Article  ADS  Google Scholar 

  14. X. Liu, Y. Sun, B.B. Hsu, A. Lorbach, L. Qi, A.J. Heeger, G.C. Bazan, J. Am. Chem. Soc. 136(15), 5697 (2014)

    Article  Google Scholar 

  15. L. Yao, B. Yang, Y. Ma, Sci. China Chem. 10, 1 (2014)

    Google Scholar 

  16. Z. Shuai, Q. Peng, Phys. Rep. 537, 123 (2014)

    Article  ADS  Google Scholar 

  17. M. Carvelli, R. Janssen, R. Coehoorn, Phys. Rev. B 83(7), 075203 (2011)

    Article  ADS  Google Scholar 

  18. J.S. Kim, P.K. Ho, N.C. Greenham, R.H. Friend, J. Appl. Phys. 88(2), 1073 (2000)

    Article  ADS  Google Scholar 

  19. L. Lin, H. Meng, J. Shy, S. Horng, L. Yu, C. Chen, H. Liaw, C. Huang, K. Peng, S. Chen, Phys. Rev. Lett. 90(3), 036601 (2003)

    Article  ADS  Google Scholar 

  20. B.J. Schwartz, Annu. Rev. Phys. Chem. 54(1), 141 (2003)

    Article  ADS  Google Scholar 

  21. S. Karabunarliev, E.R. Bittner, Phys. Rev. Lett. 90(5), 057402 (2003)

    Article  ADS  Google Scholar 

  22. C. Law, Phys. Rev. A 71, 034306 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Combescot, EPL (Europhys. Lett.) 96(6), 60002 (2011)

    Article  ADS  Google Scholar 

  24. M. Combescot, O. Betbeder-Matibet, F. Dubin, Phys. Rep. 463(5), 215 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Combescot, F. Dubin, M. Dupertuis, Phys. Rev. A 80(1), 013612 (2009)

    Article  ADS  Google Scholar 

  26. C. Chudzicki, O. Oke, W.K. Wootters, Phys. Rev. Lett. 104(7), 070402 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Gavrilik, Y.A. Mishchenko, Phys. Lett. A 376(19), 1596 (2012)

    Article  ADS  Google Scholar 

  28. P. Kurzyński, R. Ramanathan, A. Soeda, T.K. Chuan, D. Kaszlikowski, New J. Phys. 14(9), 093047 (2012)

    Article  ADS  Google Scholar 

  29. M.C. Tichy, P.A. Bouvrie, K. Mølmer, Phys. Rev. Lett. 109(26), 260403 (2012)

    Article  ADS  Google Scholar 

  30. M.C. Tichy, P.A. Bouvrie, K. Mølmer, Phys. Rev. A 86(4), 042317 (2012)

    Article  ADS  Google Scholar 

  31. A. Thilagam, arXiv preprint arXiv:1407.1091 (2014)

  32. S.M. Hashemi Rafsanjani, in Frontiers in Optics (Optical Society of America, 2010)

  33. A. Thilagam, J. Math. Chem. 51(7), 1897 (2013)

    Article  MathSciNet  Google Scholar 

  34. A. Thilagam, Phys. Rev. B 63(4), 045321 (2001)

    Article  ADS  Google Scholar 

  35. A. Köhler, D. Beljonne, Adv. Funct. Mater. 14(1), 11 (2004)

    Article  Google Scholar 

  36. P. Blom, M. De Jong, J. Vleggaar, Appl. Phys. Lett. 68(23), 3308 (1996)

    Article  ADS  Google Scholar 

  37. A. Thilagam, Phys. Rev. A 81(3), 032309 (2010)

    Article  ADS  Google Scholar 

  38. J.W. Yu, J.K. Kim, D.Y. Kim, C. Kim, N.W. Song, D. Kim, Curr. Appl. Phys. 6, 59 (2006)

    Article  ADS  Google Scholar 

  39. M.C. Tichy, P.A. Bouvrie, K. Mølmer, Appl. Phys. B 117(3), 785 (2014)

    Article  ADS  Google Scholar 

  40. J. Coe, S. Abdullah, I. D’Amico, J. Appl. Phys. 107(9), 09E110 (2010)

    Article  Google Scholar 

  41. S. Abdullah, J. Coe, I. D’Amico, Phys. Rev. B 80(23), 235302 (2009)

    Article  ADS  Google Scholar 

  42. G.A. Buxton, N. Clarke, Model. Simul. Mater. Sci. Eng. 15(2), 13 (2007)

    Article  ADS  Google Scholar 

  43. H.K. Kodali, B. Ganapathysubramanian, Model. Simul. Mater. Sci. Eng. 20(3), 035015 (2012)

    Article  ADS  Google Scholar 

  44. M. Hoffmann, K. Schmidt, T. Fritz, T. Hasche, V. Agranovich, K. Leo, Chem. Phys. 258(1), 73 (2000)

    Article  ADS  Google Scholar 

  45. Y. Min Nam, J. Huh, W. Ho Jo, Sol. Energy Mater. Sol. Cells 94(6), 1118 (2010)

    Article  Google Scholar 

  46. W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Adv. Funct. Mater. 15(10), 1617 (2005)

    Article  Google Scholar 

  47. R.D. Schaller, V.M. Agranovich, V.I. Klimov, Nat. Phys. 1(3), 189 (2005)

    Article  Google Scholar 

  48. K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, J. Shan, Nat. Mater. 12(3), 207 (2013)

    Article  ADS  Google Scholar 

  49. A. Ramasubramaniam, Phys. Rev. B 86(11), 115409 (2012)

    Article  ADS  Google Scholar 

  50. J. Wilson, A. Yoffe, Adv. Phys. 18(73), 193 (1969)

    Article  ADS  Google Scholar 

  51. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7(11), 699 (2012)

    Article  ADS  Google Scholar 

  52. A. Thilagam, J. Appl. Phys. 116(5), 053523 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was undertaken on the NCI National Facility in Canberra, Australia, which is supported by the Australian Commonwealth Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Thilagam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thilagam, A. Effect of the Pauli exclusion principle on the singlet exciton yield in conjugated polymers. Appl. Phys. A 122, 254 (2016). https://doi.org/10.1007/s00339-016-9792-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9792-5

Keywords

Navigation