Skip to main content
Log in

Role of uniform horizontal magnetic field on convective flow

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The effect of uniform magnetic field applied along a fixed horizontal direction in Rayleigh-Bénard convection in low-Prandtl-number fluids has been studied using a low dimensional model. The model shows the onset of convection (primary instability) in the form of two dimensional stationary rolls in the absence of magnetic field, when the Rayleigh number R is raised above a critical value R c . The flow becomes three dimensional at slightly higher values of Rayleigh number via wavy instability. These wavy rolls become chaotic for slightly higher values of R in low-Prandtl-number (P r ) fluids. A uniform magnetic field along horizontal plane strongly affects all kinds of convective flows observed at higher values of R in its absence. As the magnetic field is raised above certain value, it orients the convective rolls in its own direction. Although the horizontal magnetic field does not change the threshold for the primary instability, it affects the threshold for secondary (wavy) instability. It inhibits the onset of wavy instability. The critical Rayleigh number R o (Q, P r ) at the onset of wavy instability, which depends on Chandrasekhar’s number Q and P r , increases monotonically with Q for a fixed value of P r . The dimensionless number R o (Q, P r ) / (R c Q P r ) scales with Q as Q −1. A stronger magnetic field suppresses chaos and makes the flow two dimensional with roll pattern aligned along its direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chandrasekhar, Hydrodynamic and Magnetohydrody- namic Stability (Oxford University Press, Oxford, 1961)

  2. M.R.E. Proctor, N.O. Weiss, Rep. Prog. Phys. 45, 1317 (1982)

    Article  ADS  Google Scholar 

  3. D.T.J. Hurle, R.W. Series, Handbook of crystal growth, edited by D.T.J. Hurle (North Holland, Amsterdam, 1994)

  4. A. Gailitis, O. Lielausis, E. Platacis, G. Gerbeth, F. Stephani, F. Rossendorf, Rev. Mod. Phys. 74, 973 (2002)

    Article  ADS  Google Scholar 

  5. F.H. Busse, R.M. Clever, J. Mech. Theor. Appl. 2, 495 (1983)

    ADS  MATH  Google Scholar 

  6. F.H. Busse, R.M. Clever, Phys. Rev. A 40, 1954 (1989)

    Article  ADS  Google Scholar 

  7. R.M. Clever, F.H. Busse, J. Fluid Mech. 201, 507 (1989)

    Article  ADS  MATH  Google Scholar 

  8. P. Pal, K. Kumar, Indian J. Phys. 81, 1215 (2007)

    Google Scholar 

  9. P. Sulem, C. Sulem, P.L. Sulem, O. Thual, Prog. Astro. Aeronaut. 100, 125 (1985)

    Google Scholar 

  10. M. Meneguzzi, C. Sulem, P.L. Sulem, O. Thual, J. Fluid Mech. 182, 169 (1987)

    Article  ADS  MATH  Google Scholar 

  11. O.M. Podvigina, Phys. Rev. E 81, 056322 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  12. Y. Nakagawa, Proc. R. Soc. A 240, 108 (1957)

    Article  ADS  Google Scholar 

  13. Y. Nakagawa, Proc. R. Soc. A 249, 138 (1959)

    Article  ADS  Google Scholar 

  14. B. Lehnert, N.C. Little, Tellus 9, 97 (1957)

    Article  ADS  Google Scholar 

  15. S. Fauve, C. Laroche, A. Libchaber, J. Phys. Lett. 42, L455 (1981)

    Article  Google Scholar 

  16. S. Fauve, C. Laroche, A. Libchaber, J. Phys. Lett. 45, L101 (1984)

    Article  Google Scholar 

  17. S. Fauve, C. Laroche, A. Libchaber, B. Perrin, Phys. Rev. Lett. 52, 1774 (1984)

    Article  ADS  Google Scholar 

  18. B. Hof, A. Juel, T. Mullin, J. Fluid Mech. 545, 193 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. K.E. McKell, D.S. Broomhead, R. Jones, D.T.J. Hurle, Europhys. Lett. 12, 513518 (1990)

    Article  Google Scholar 

  20. F.H. Busse, J. Fluid Mech. 52, 97 (1972)

    Article  ADS  MATH  Google Scholar 

  21. P. Pal, K. Kumar, Phys. Rev. E 65, 047302 (2002)

    Article  ADS  Google Scholar 

  22. O. Thual, J. Fluid Mech. 240, 229 (1992)

    Article  ADS  MATH  Google Scholar 

  23. K. Kumar, S. Fauve, O. Thual, J. Phys. II 6, 945 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, P., Kumar, K. Role of uniform horizontal magnetic field on convective flow. Eur. Phys. J. B 85, 201 (2012). https://doi.org/10.1140/epjb/e2012-30048-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30048-8

Keywords

Navigation