Skip to main content
Log in

A model for Rayleigh-Bénard magnetoconvection

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A model for three-dimensional Rayleigh-Bénard convection in low-Prandtl-number fluids near onset with rigid horizontal boundaries in the presence of a uniform vertical magnetic field is constructed and analyzed in detail. The kinetic energy K, the convective entropy Φ and the convective heat flux (Nu − 1) show scaling behaviour with ε = r − 1 near onset of convection, where r is the reduced Rayleigh number. The model is also used to investigate various magneto-convective structures close to the onset. Straight rolls, which appear at the primary instability, become unstable with increase in r and bifurcate to three-dimensional structures. The straight rolls become periodically varying wavy rolls or quasiperiodically varying structures in time with increase in r depending on the values of Prandtl number Pr. They become irregular in time, with increase in r. These standing wave solutions bifurcate first to periodic and then to quasiperiodic traveling wave solutions, as r is raised further. The variations of the critical Rayleigh number R a os and the frequency ω os at the onset of the secondary instability with Pr are also studied for different values of Chandrasekhar’s number Q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nakagawa, Proc. R. Soc. Lond. A 240, 108 (1957)

    Article  ADS  Google Scholar 

  2. Y. Nakagawa, Proc. R. Soc. Lond. A 249, 138 (1959)

    Article  ADS  Google Scholar 

  3. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, London, 1961)

  4. S. Fauve, C. Laroche, A. Libchaber, J. Phys. Lett. 42, L455 (1981)

    Article  Google Scholar 

  5. E. Knobloch, N.O. Weiss, L.N. Da Costa, J. Fluid Mech. 113, 153 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. M.R.E. Proctor, N.O. Weiss, Rep. Prog. Phys. 45, 1317 (1982)

    Article  ADS  Google Scholar 

  7. F.H. Busse, R.M. Clever, Phys. Fluids 25, 931 (1982)

    Article  MATH  ADS  Google Scholar 

  8. S. Fauve, C. Laroche, A. Libchaber, J. Phys. Lett. 45, L101 (1984)

    Article  Google Scholar 

  9. S. Fauve, C. Laroche, A. Libchaber, B. Perrin, Phys. Rev. Lett. 52, 1774 (1984)

    Article  ADS  Google Scholar 

  10. K. Kumar, J.K. Bhattacharjee, K. Banerjee, Phys. Fluids 29, 4032 (1986)

    Article  ADS  Google Scholar 

  11. M. Meneguzzi, C. Sulem, P.L. Sulem, O. Thual, J. Fluid Mech. 182, 169 (1987)

    Article  MATH  ADS  Google Scholar 

  12. R.M. Clever, F.H. Busse, J. Fluid Mech. 201, 507 (1989)

    Article  MATH  ADS  Google Scholar 

  13. F.H. Busse, R.M. Clever, Phys. Rev. A 40, 1954 (1989)

    Article  ADS  Google Scholar 

  14. G. Glatzmaier, R. Coe, L. Hongre, P. Roberts, Nature 401, 885 (1999)

    Article  ADS  Google Scholar 

  15. K. Julien, E. Knobloch, S. Tobias, J. Fluid Mech. 410, 285 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. S. Cioni, S. Chaumat, J. Sommeria, Phys. Rev. E 62, R4520 (2000)

    Article  ADS  Google Scholar 

  17. J.M. Aurnou, P.L. Olson, J. Fluid Mech. 430, 283 (2001)

    Article  MATH  ADS  Google Scholar 

  18. U. Burr, U. Müller, J. Fluid Mech. 453, 345 (2002)

    Article  MATH  ADS  Google Scholar 

  19. B.C. Houchens, L.M. Witkowski, J.S. Walker, J. Fluid Mech. 469, 189 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. F. Cattaneo, T. Emonet, N. Weiss, ApJ 588, 1183 (2003)

    Article  ADS  Google Scholar 

  21. A.M. Rucklidge, M.R.E. Proctor, J. Prat, Geo. Astr. Fluid Dyn. 100, 121 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. J.H.P. Dawes, J. Fluid Mech. 570, 385 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. H. Varshney, M.F. Baig, J. Turbulence 9, 1 (2008)

    Article  MathSciNet  Google Scholar 

  24. O. Podvigina, Phys. Rev. E 81, 056322 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  25. T. Yanagisawa, Y. Yamagishi, Y. Hamano, Y. Tasaka, Y. Takeda, Phys. Rev. E 83, 036307 (2011)

    Article  ADS  Google Scholar 

  26. P. Pal, K. Kumar, Eur. Phys. J. B 85, 201 (2012)

    Article  ADS  Google Scholar 

  27. A. Basak, R. Raveendran, K. Kumar, Phys. Rev. E 90, 033002 (2014)

    Article  ADS  Google Scholar 

  28. J. Niederländer, M. Lücke, M. Kamps, Z. Phys. B 82, 135 (1991)

    Article  ADS  Google Scholar 

  29. K.B. Hermiz, P.N. Guzdar, J.M. Finn, Phys. Rev. E 51, 325 (1995)

    Article  ADS  Google Scholar 

  30. R.M. Clever, F.H. Busse, J. Fluid Mech. 102, 61 (1981)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, A., Kumar, K. A model for Rayleigh-Bénard magnetoconvection. Eur. Phys. J. B 88, 244 (2015). https://doi.org/10.1140/epjb/e2015-60579-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60579-1

Keywords

Navigation