Skip to main content
Log in

Electronic conductance via atomic wires: a phase field matching theory approach

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A model is presented for the quantum transport of electrons, across finite atomic wire nanojunctions between electric leads, at zero bias limit. In order to derive the appropriate transmission and reflection spectra, familiar in the Landauer-Büttiker formalism, we develop the algebraic phase field matching theory (PFMT). In particular, we apply our model calculations to determine the electronic conductance for freely suspended monatomic linear sodium wires (MLNaW) between leads of the same element, and for the diatomic copper-cobalt wires (DLCuCoW) between copper leads on a Cu(111) substrate. Calculations for the MLNaW system confirm the correctness and functionality of our PFMT approach. We present novel transmission spectra for this system, and show that its transport properties exhibit the conductance oscillations for the odd- and even-number wires in agreement with previously reported first-principle results. The numerical calculations for the DLCuCoW wire nanojunctions are motivated by the stability of these systems at low temperatures. Our results for the transmission spectra yield for this system, at its Fermi energy, a monotonic exponential decay of the conductance with increasing wire length of the Cu-Co pairs. This is a cumulative effect which is discussed in detail in the present work, and may prove useful for applications in nanocircuits. Furthermore, our PFMT formalism can be considered as a compact and efficient tool for the study of the electronic quantum transport for a wide range of nanomaterial wire systems. It provides a trade-off in computational efficiency and predictive capability as compared to slower first-principle based methods, and has the potential to treat the conductance properties of more complex molecular nanojunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Agraït, A. Levy-Yeyati, J.M. van Ruitenbeek, Phys. Rep. 377, 81 (2003)

    Article  ADS  Google Scholar 

  2. A. Nitzan, M.A. Ratner, Science 300, 1384 (2003)

    Article  ADS  Google Scholar 

  3. V. Lamba, S.J. Engles, D. Engles, S.S. Malik, M. Verma, Proceeding I. Mech. E. 223, 57 (2009)

    Google Scholar 

  4. A.M.C. Valkering, A.I. Mares, C. Untiedt, K.B. Gavan, T.H. Oosterkamp, J.M. van Ruitenbeek, Rev. Sci. Instrum. 76, 103903 (2005)

    Article  ADS  Google Scholar 

  5. D.T. Smith, J.R. Pratt, F. Tavazza, L.E. Levine, A.M. Chaka, J. Appl. Phys. 107, 084307 (2010)

    Article  ADS  Google Scholar 

  6. J. Kröger, A. Sperl, N. Néel, R. Berndt, Journal of Scanning Probe Microscopy 4, 49 (2009)

    Article  Google Scholar 

  7. C. Jin, H. Lan, L. Peng, K. Suenaga, S. Iijima, Phys. Rev. Lett. 102, 205501 (2009)

    Article  ADS  Google Scholar 

  8. J. Bettini, F. Sato, P.Z. Coura, S.O. Dantas, D.S. Galvão, D. Ugarte, Nature Nanotechnol. 1, 182 (2006)

    Article  ADS  Google Scholar 

  9. N.D. Lang, Phys. Rev. Lett. 79, 1357 (1997)

    Article  ADS  Google Scholar 

  10. R.H.M. Smit, C. Untiedt, G. Rubio-Bollinger, R.C. Segers, J.M. van Ruitenbeek, Phys. Rev. Lett. 91, 076805 (2003)

    Article  ADS  Google Scholar 

  11. Y.J. Lee, M. Brandbyge, M.J. Puska, J. Taylor, K. Stokbro, R.M. Nieminen, Phys. Rev. B 69, 125409 (2004)

    Article  ADS  Google Scholar 

  12. P.A. Khomyakov, G. Brocks, Phys. Rev. B 74, 165416 (2006)

    Article  ADS  Google Scholar 

  13. K.S. Thygesen, K.W. Jacobsen, Phys. Rev. Lett. 91, 146801 (2003)

    Article  ADS  Google Scholar 

  14. Y. Xu, X.Q. Shi, Z. Zeng, Z.Y. Zeng, B.W. Li, J. Phys.: Condens. Matter 19, 056010 (2007)

    Article  ADS  Google Scholar 

  15. L. de la Vega, A. Martín-Rodero, A. Levy Yeyati, A. Saúl, Phys. Rev. B 70, 113107 (2004)

    Article  ADS  Google Scholar 

  16. N.D. Lang, Ph. Avouris, Phys. Rev. Lett. 81, 3515 (1998)

    Article  ADS  Google Scholar 

  17. L. Shen, M. Zeng, S.-W. Yang, C. Zhang, X. Wang, Y. Feng, J. Am. Chem. Soc. 132, 11481 (2010)

    Article  Google Scholar 

  18. J.-L. Mozos, C.C. Wan, G. Taraschi, J. Wang, H. Guo, Phys. Rev. B 56, 4351 (1997)

    Article  ADS  Google Scholar 

  19. Y.-H. Zhou, X.-H. Zheng, Y. Xu, Z.Y. Zeng, J. Phys.: Condens. Matter 20, 045225 (2008)

    Article  ADS  Google Scholar 

  20. Y. Ke, K. Xia, H. Guo, Phys. Rev. Lett. 100, 166805 (2008)

    Article  ADS  Google Scholar 

  21. P. Havu, V. Havu, M.J. Puska, M.H. Hakala, A.S. Foster, R.M. Nieminen, J. Chem. Phys. 124, 054707 (2006)

    Article  ADS  Google Scholar 

  22. R.G. Newton, Scattering Theory of Waves and Particles (Dover Publications, New York, 2002)

  23. R. Landauer, IBM J. Res. Dev. 1, 223 (1957)

    Article  MathSciNet  Google Scholar 

  24. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

  25. S. Tsukamoto, Y. Egami, T. Ono, J. Comput. Theor. Nanosci. 6, 2521 (2009)

    Article  Google Scholar 

  26. Y. Egami, K. Hirose, T. Ono, Phys. Rev. E 82, 056706 (2010)

    Article  ADS  Google Scholar 

  27. G.P. Zhang, X.W. Fang, Y.X. Yao, C.Z. Wang, Z.J. Ding, K.M. Ho, J. Phys.: Condens. Matter 23, 025302 (2011)

    Article  ADS  Google Scholar 

  28. D. Nozaki, H.M. Pastawski, G. Cuniberti, New J. Phys. 12, 063004 (2010)

    Article  ADS  Google Scholar 

  29. T. Ando, Phys. Rev. B 44, 8017 (1991)

    Article  ADS  Google Scholar 

  30. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

  31. P.S. Krstić, X.-G. Zhang, W.H. Butler, Phys. Rev. B 66, 205319 (2002)

    Article  ADS  Google Scholar 

  32. I. Deretzis, A. La Magna, Eur. Phys. J. B 81, 15 (2011), references therein

    Article  ADS  Google Scholar 

  33. A. Khater, B. Bourahla, M. Abou Ghantous, R. Tigrine, R. Chadli, Eur. Phys. J. B 82, 53 (2011)

    Article  ADS  Google Scholar 

  34. A. Khater, M. Belhadi, M. Abou Ghantous, Eur. Phys. J. B 80, 363 (2011)

    Article  ADS  Google Scholar 

  35. R. Tigrine, A. Khater, B. Bourahla, M. Abou Ghantous, O. Rafil, Eur. Phys. J. B 62, 59 (2008)

    Article  ADS  Google Scholar 

  36. A. Virlouvet, A. Khater, H. Aouchiche, O. Rafil, K. Maschke, Phys. Rev. B 59, 4933 (1999)

    Article  ADS  Google Scholar 

  37. A. Fellay, F. Gagel, K. Maschke, A. Virlouvet, A. Khater, Phys. Rev. B 55, 1707 (1997)

    Article  ADS  Google Scholar 

  38. J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954)

    Article  ADS  MATH  Google Scholar 

  39. D. Szczęśniak, A. Khater, R. Szczęśniak, Z. Ba¸k, in Solid State Physics in Modern Materials Research, edited by K. Dziliński, J.J. Wysłocki (CUT Publishing House, Czestochowa, 2010), pp. 161–173

  40. A. Khater, D. Szczęśniak, J. Phys.: Conf. Ser. 289, 012013 (2011)

    Article  ADS  Google Scholar 

  41. H. Rabani, M. Mardaani, Solid State Commun. 152, 235 (2012)

    Article  ADS  Google Scholar 

  42. J. Chen, L. Yang, H. Yang, J. Dong, Phys. Lett. A 316, 101 (2003)

    Article  ADS  Google Scholar 

  43. Y. Wu, P.A. Childs, Nanoscale Res. Lett. 6, 62 (2011)

    ADS  Google Scholar 

  44. Z. Li, D.S. Kosov, J. Phys.: Condens. Matter 18, 1347 (2006)

    Article  ADS  Google Scholar 

  45. Y. Egami, T. Ono, K. Hirose, Phys. Rev. B 72, 125318 (2005)

    Article  ADS  Google Scholar 

  46. A. Zugarramurdi, A.G. Borisov, N. Zabala, E.V. Chulkov, M.J. Puska, Phys. Rev. B 83, 035402 (2011)

    Article  ADS  Google Scholar 

  47. J. Lagoute, C. Nacci, S. Fölsch, Phys. Rev. Lett. 98, 146804 (2007)

    Article  ADS  Google Scholar 

  48. S. Fölsch, P. Hyldgaard, R. Koch, K.H. Ploog, Phys. Rev. Lett. 92, 056803 (2004)

    Article  ADS  Google Scholar 

  49. J. Lagoute, X. Liu, S. Fölsch, Phys. Rev. B 74, 125410 (2006)

    Article  ADS  Google Scholar 

  50. H.H.B. Sørensen, P.C. Hansen, D.E. Petersen, S. Skelboe, K. Stokbro, Phys. Rev. B 79, 205322 (2009), references therein

    Article  ADS  Google Scholar 

  51. J.M. Krans, J.M. van Ruitenbeek, V.V. Fisun, I.K. Yanson, L.J. de Jongh, Nature 375, 767 (1995)

    Article  ADS  Google Scholar 

  52. W.A. Harrison, Elementary Electronic Structure (World Scientific, Singapore, 2004)

  53. F. Yamaguchi, T. Yamada, Y. Yamamoto, Solid State Commun. 102, 779 (1997)

    Article  ADS  Google Scholar 

  54. M. Saubanère, J.L. Ricardo-Chávez, G.M. Pastor, Phys. Rev. B 82, 054436 (2010)

    Article  ADS  Google Scholar 

  55. O. Brovko, P.A. Ignatiev, V.S. Stepanyuk, Phys. Rev. B 83, 125415 (2011)

    Article  ADS  Google Scholar 

  56. N. Néel, R. Berndt, J. Kröget, T.O. Wehling, A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. Lett. 107, 106804 (2011)

    Article  ADS  Google Scholar 

  57. N. Oncel, J. Phys.: Condens. Matter 20, 393001 (2008)

    Article  Google Scholar 

  58. N. Nilius, T.M. Wallis, W. Ho, Science 297, 1853 (2002)

    Article  ADS  Google Scholar 

  59. T.M. Wallis, N. Nilius, G. Mikaelian, W. Ho, J. Chem. Phys. 122, 011101 (2005)

    Article  ADS  Google Scholar 

  60. A. Delga, J. Lagoute, V. Repain, C. Chacon, Y. Girard, M. Marathe, S. Narasimhan, S. Rousset, Phys. Rev. B 84, 035416 (2011)

    Article  ADS  Google Scholar 

  61. D. Szczęśniak, A. Khater, R. Szczȩśniak, Z. Ba¸k (2012), arXiv:1204.4287

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Szczęśniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczęśniak, D., Khater, A. Electronic conductance via atomic wires: a phase field matching theory approach. Eur. Phys. J. B 85, 174 (2012). https://doi.org/10.1140/epjb/e2012-21055-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-21055-x

Keywords

Navigation