Skip to main content
Log in

Determining and characterizing families of electronic resonance states in open and closed coupled cavities

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Here a straightforward procedure to characterize electronic resonances in arbitrary coupled open or closed nano and micro structures – formed by cavities (or billiards) connected by waveguides – is presented. Based on the boundary wall method, it identifies families of states arising from continuous changes in the system geometric parameters without the necessity to explicit calculate the eigenfunctions. Nevertheless, if desired they also can be obtained with good numerical accuracy. As a case study, two rectangular cavities coupled to waveguides is considered. It is exemplified how the bound states, bound states in the continuum and truly transmission states respond to certain modifications in the problem geometry. The analysis simplicity illustrates the potential of the approach in ascertaining structures shapes with distinct resonance properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Linke, T.E. Humphrey, R.P. Taylor, A.P. Micolich, R. Newbury, Phys. Scr. T 90, 54 (2001)

    Article  ADS  Google Scholar 

  2. R. Brunner, R. Meisels, F. Kuchar, R. Akis, D.K. Ferry, J.P. Bird, Phys. Rev. Lett. 98, 204101 (2007)

    Article  ADS  Google Scholar 

  3. A.F. Sadreev, E. Bulgakov, I. Rotter, J. Phys. A 38, 10647 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. R.L. Weaver, Phys. Rev. E 73, 036610 (2006)

    Article  ADS  Google Scholar 

  5. D.V. Scheible, A. Erbe, R.H. Blick, New J. Phys. 4, 86 (2002)

    Article  ADS  Google Scholar 

  6. T. Brandes, Phys. Rep. 408, 315 (2005)

    Article  ADS  Google Scholar 

  7. R.S. Whitney, Ph. Jacquod, Phys. Rev. Lett. 103, 247002 (2009)

    Article  ADS  Google Scholar 

  8. K. Nakamura, T. Harayama, Quantum Chaos and Quantum Dots (Oxford Univ. Press, 2004)

  9. J.B. Wang, S. Midgley, J. Comput. Theor. Nanosci. 4, 408 (2007)

    Google Scholar 

  10. L. Wirtz, J.-Z. Tang, J. Burgdörfer, Phys. Rev. B 56, 7589 (1997)

    Article  ADS  Google Scholar 

  11. E. Persson, I. Rotter, H.-J. Stöckmann, M. Barth, Phys. Rev. Lett. 85, 2478 (2000)

    Article  ADS  Google Scholar 

  12. A. Alt, C.I. Barbosa, H.-D. Gräf, T. Guhr, H.L. Harney, R. Hoffenbert, H. Rehfeld, A. Richter, Phys. Rev. Lett. 81, 4847 (1998)

    Article  ADS  Google Scholar 

  13. H.-J. Stöckmann, E. Persson, Y.-H. Kim, M. Barth, U. Kuhl, I. Rotter, Phys. Rev. E 65, 066211 (2002)

    Article  ADS  Google Scholar 

  14. A.F. Sadreev, I. Rotter, J. Phys. A 36, 11413 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. A.F. Sadreev, Phys. Rev. E 70, 016208 (2004)

    Article  ADS  Google Scholar 

  16. M. Mendoza, A. Shulz, Phys. Rev. B 71, 245303 (2005)

    Article  ADS  Google Scholar 

  17. T.P. Martin, R.P. Taylor, H. Linke, B. Murray, N. Aoki, D. Oonishi, Y. Ywase, Y. Ochiani, Curr. Appl. Phys. 6, 541 (2006)

    Article  ADS  Google Scholar 

  18. S. Aberg, T. Guhr, M. Miski-Oglu, A. Richter, Phys. Rev. Lett. 100, 204101 (2008)

    Article  ADS  Google Scholar 

  19. R.G. Nazmitdinov, K.N. Pichugin, I. Rotter, P. Seba, Phys. Rev. B 66, 085322 (2002)

    Article  ADS  Google Scholar 

  20. K. Frahm, J.-L. Pichard, J. Phys. I 5, 877 (1995)

    Article  Google Scholar 

  21. R.S. Whitney, Phys. Rev. B 75, 235404 (2007)

    Article  ADS  Google Scholar 

  22. Y. Xu, Y. Li, R.K. Lee, A. Yariv, Phys. Rev. E 62, 7389 (2000)

    Article  ADS  Google Scholar 

  23. K.-F. Berggren, A.F. Sadreev, A.A. Starikov, Phys. Rev. E66, 016218 (2002)

  24. G.B. Akguc, T.H. Seligman, Phys. Rev. B 74, 245317 (2006)

    Article  ADS  Google Scholar 

  25. T. Engl, J. Kuipers, K. Richter, Phys. Rev. B 83, 205414 (2011)

    Article  ADS  Google Scholar 

  26. K. Pichugin, H. Schanz, P. Seba, Phys. Rev. E 64, 056227 (2001)

    Article  ADS  Google Scholar 

  27. H.U. Baranger, R.A. Jalabert, A.D. Stone, Chaos 3, 665 (1993)

    Article  ADS  Google Scholar 

  28. L. Grill, M. Dyer, L. Lafferentz, M. Persson, M.V. Peters, S. Hecht, Nature Nanotechol. 2, 687 (2007)

    Article  ADS  Google Scholar 

  29. E.N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, W. Lu, Nano Lett. 7, 2463 (2007)

    Article  ADS  Google Scholar 

  30. P. Palestri, D. Esseni, S. Eminente, C. Fiegna, E. Sangiorgi, E. Selmi, IEEE Trans. Electron Devices 52, 2727 (2005)

    Article  ADS  Google Scholar 

  31. P. Palestri, D. Esseni, S. Eminente, C. Fiegna, E. Sangiorgi, E. Selmi, IEEE Trans. Electron Devices 52, 2736 (2005)

    Article  ADS  Google Scholar 

  32. A.S. Silbergleit, Y. Kopilevich, Spectral Theory of Guided Waves (Inst. Phys. Publish., 1996)

  33. B.Z. Katsenelenbaum, High-Frequency Electrodynamics (Wiley-VCH, 2006)

  34. L.N. Trefethen, Spectral Methods in Matlab (SIAM, 2000)

  35. A. Israel, A. Lewis, Appl. Phys. Lett. 86, 131101 (2005)

    Article  ADS  Google Scholar 

  36. J.D. Readle, K.E. Tobin, K.S. Kim, J.K. Yoon, J. Zheng, S.K. Lee, S.J. Park, J.G. Eden, IEEE Trans. Plasma Sci. 37, 1045 (2009)

    Article  ADS  Google Scholar 

  37. M.G.E. da Luz, A.S. Lupu-Sax, E.J. Heller, Phys. Rev. E 56, 2496 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  38. F.M. Zanetti, E. Vicentini, M.G.E. da Luz, Ann. Phys. 323, 1644 (2008)

    Article  ADS  MATH  Google Scholar 

  39. D. Routkevitch, A.A. Tager, J. Haruyama, D. Almawlawi, M. Moskovits, J.M. Xu, IEEE Trans. Electron Devices 43, 1646 (1996)

    Article  ADS  Google Scholar 

  40. M. Blencowe, Phys. Rep. 395, 159 (2004)

    Article  ADS  Google Scholar 

  41. J.A. Katine, M.A. Eriksson, A.S. Adourian, R.M. Westervelt, J.D. Edwards, A. Lupu-Sax, E.J. Heller, K.L. Campman, A.C. Grossard, Phys. Rev. Lett. 79, 4806 (1997)

    Article  ADS  Google Scholar 

  42. P.V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, S. Sridhar, Phys. Rev. Lett. 92, 127401 (2004)

    Article  ADS  Google Scholar 

  43. J.Y. Vaishnav, J.D. Walls, M. Apratim, E.J. Heller, Phys. Rev. A 76, 013620 (2007)

    Article  ADS  Google Scholar 

  44. A.G. Macedo, F.M. Zanetti, A. Mikowski, J.C. Hummelen, C.M. Lepienski, M.G.E. da Luz, L.S. Roman, J. Appl. Phys. 104, 033714 (2008)

    Article  ADS  Google Scholar 

  45. F.M. Zanetti, M.L. Lyra, F.A.B.F. de Moura, M.G.E. da Luz, J. Phys. B 42, 025402 (2009)

    Article  ADS  Google Scholar 

  46. J. von Neumann, E. Wigner, Phys. Z. 30, 465 (1929)

    Google Scholar 

  47. F.H. Stillinger, D.R. Herrick, Phys. Rev. A 11, 446 (1975)

    Article  ADS  Google Scholar 

  48. V.M. Chabanov, B.N. Zakhariev, I.V. Amirkhanov, Ann. Phys. 285, 1 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. G. Cattapan, P. Lotti, Eur. Phys. J. B 66, 517 (2008)

    Article  ADS  Google Scholar 

  50. R. Akis, J.P. Bird, D.K. Ferry, Microeletron. Eng. 63, 241 (2002)

    Article  Google Scholar 

  51. S. Flügge, Practical Quantum Mechanics (Springer-Verlag, 1994)

  52. I. Rotter, A.F. Sadreev, Phys. Rev. E 71, 046204 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  53. G. Ordonez, K. Na, S. Kim, Phys. Rev. A 73, 022113 (2006)

    Article  ADS  Google Scholar 

  54. I.V. Zozoulenko, K.-F. Berggren, Phys. Rev. B 56, 6931 (1997)

    Article  ADS  Google Scholar 

  55. O. Olendski, L. Mikhailovska, Phys. Rev. B 67, 035310 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  56. C. Duan, W. Guo-Wei, J. Comput. Phys. 229, 4431 (2010)

    Article  ADS  MATH  Google Scholar 

  57. B. Weingartner, S. Rotter, J. Burgdorfer, Phys. Rev. B 72, 115342 (2005)

    Article  ADS  Google Scholar 

  58. J. Nagler, M. Krieger, M. Linke, J. Schonke, J. Wiersig, Phys. Rev. E 75, 046204 (2007)

    Article  ADS  Google Scholar 

  59. T. Kwapinski, S. Kohler, P. Hanggi, Eur. Phys. J. B 78, 75 (2010)

    Article  ADS  Google Scholar 

  60. F. Simmel, B. Eckert, Phys. Rev. E 51, 5435 (1995)

    Article  ADS  Google Scholar 

  61. I. Rotter, Phys. Rev. E 64, 036213 (2001)

    Article  ADS  Google Scholar 

  62. C. Poli, B. Dietz, O. Legrand, F. Mortessagne, A. Richter, Phys. Rev. E 80, 035204 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. E. da Luz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanetti, F.M., da Luz, M.G.E. Determining and characterizing families of electronic resonance states in open and closed coupled cavities. Eur. Phys. J. B 85, 202 (2012). https://doi.org/10.1140/epjb/e2012-20925-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20925-5

Keywords

Navigation