Skip to main content

Advertisement

Log in

Properties of Shockley partials in InP: core width, Peierls barrier and stress

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The core width and Peierls barrier and stress for Shockley partials in InP have been investigated using the improved P-N theory. The core width of 90° partial is about 1.6 times wider than that of 30° partial, and both of them are very narrow: core width ξ < 0.5b. In calculating the Peierls barrier and stress, the contribution from stain energy ignored by classical P-N theory has been considered. The calculated results show that when the dislocation moves, both the misfit and strain energies change periodically. They cancel each other due to the same order but opposite phases. Accordingly, the Peierls barrier and stress calculated from improved P-N theory are much lower than those calculated from the classical P-N theory. The Peierls barrier for 90° and 30° partials obtained by us is respectively about  ~0.047 eV/Å and 0.044–0.075 eV/Å, the Peierls stress is respectively about 3.7–5.0 GPa and 4.2–6.9 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Mujagic, M. Austerer, S. Schartner, M. Nobile, L.K. Hoffmann, W. Schrenk, G. Strasser, M.P. Semtsiv, I. Bayrakli, M. Wienold, W.T. Masselink, J. Appl. Phys. 103, 033104 (2008)

    Article  ADS  Google Scholar 

  2. T.J. Coutts, S. Naseem, Appl. Phys. Lett. 46, 164 (1985)

    Article  ADS  Google Scholar 

  3. J.F. Wang, M.S. Gudiksen, X.F. Duan, Y. Cui, C.M. Lieber, Science 293, 1455 (2001)

    Article  ADS  Google Scholar 

  4. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Nature 415, 617 (2002)

    Article  ADS  Google Scholar 

  5. X.F. Duan, C.M. Niu, V. Sahi, J. Chen, J.W. Parce, S. Empedocles, J.L. Goldman, Nature 425, 274 (2003)

    Article  ADS  Google Scholar 

  6. J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edn. (Wiley, New York, 1982)

  7. P.B. Hirsch, Sci. Technol. 1, 666 (1985)

    Google Scholar 

  8. M.S. Duesbery, G.Y. Richardson, Solid State Mater. Sci. 17, 1 (1991)

    Article  Google Scholar 

  9. H. Alexander, H. Teichler, in Materials Science and Technology, edited by R.W. Cahn, P. Hassen, E.J. Kramer (VCH Weiheim, Cambridge, 1993), Vol. 4, p. 249

  10. U. Kaiser, I.I. Khodos, M.N. Kovalchuk, W. Richter, Crystallogr. Rep. 46, 1005 (2001)

    Article  ADS  Google Scholar 

  11. H.-P. Chen, R.K. Kalia, A. Nakano, P. Vashishta, J. Appl. Phys. 102, 063514 (2007)

    Article  ADS  Google Scholar 

  12. H.O.K. Kirchner, T. Suzuki, Acta Mater. 46, 305 (1998)

    Article  Google Scholar 

  13. K. Edagawa, H. Koizumi, Y. Kamimura, T. Suzuki, Phil. Mag. A 80, 2591 (2000)

    Article  ADS  Google Scholar 

  14. H. Koizumi, Y. Kamimura, T. Suzuki, Phil. Mag. A 80, 609 (2000)

    Article  ADS  Google Scholar 

  15. B. Joos, Q. Ren, M.S. Duesbery, Phys. Rev. B 50, 5890 (1994)

    Article  ADS  Google Scholar 

  16. R.E. Peierls, Proc. Phys. Soc. 52, 23 (1940)

    Article  Google Scholar 

  17. B. Joos, M.S. Duesbery, Phys. Rev. Lett. 78, 266 (1997)

    Article  ADS  Google Scholar 

  18. V.V. Bulatov, E. Kaxiras, Phys. Rev. Lett. 78, 4221 (1997)

    Article  ADS  Google Scholar 

  19. S.F. Wang, H.L. Zhang, X.Z. Wu, R.P. Liu, J. Phys.: Condens. Matter 22, 055801 (2010)

    Article  ADS  Google Scholar 

  20. S.F. Wang, Phys. Rev. B 65, 094111 (2002)

    Article  Google Scholar 

  21. S.F. Wang, Chinese Phys. 14, 2575 (2005)

    Article  ADS  Google Scholar 

  22. S.F. Wang, J. Phys. A Math. Theor. 42, 025208 (2009)

    Article  ADS  Google Scholar 

  23. S.F. Wang, R.P. Liu, X.Z. Wu, J. Phys.: Condens. Matter 20, 485207 (2008)

    Article  Google Scholar 

  24. X.Z. Wu, S.F. Wang, Front. Mater. Sci. China 3, 205 (2009)

    Article  Google Scholar 

  25. P.S. Branicio, J.P. Rino, C.K. Gan, H. Tsuzuki, J. Phys.: Condens. Matter 21, 095002 (2009)

    Article  ADS  Google Scholar 

  26. J.W. Christian, V. Vitek, Rep. Prog. Phys. 33, 307 (1970)

    Article  ADS  Google Scholar 

  27. H.L. Zhang, Physica B 406, 1323 (2011)

    Article  ADS  Google Scholar 

  28. S.F. Wang, Phys. Lett. A 313, 408 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. S.F. Wang, Chinese Phys. 15, 1301 (2006)

    Article  ADS  Google Scholar 

  30. J.F. Justo, V.V. Bulatov, S. Yip, J. Appl. Phys. 86, 4249 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H.L., Yuan, C.J. Properties of Shockley partials in InP: core width, Peierls barrier and stress. Eur. Phys. J. B 85, 87 (2012). https://doi.org/10.1140/epjb/e2012-20713-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20713-3

Keywords

Navigation