Skip to main content
Log in

Tunneling conductivity in lithiated transition metal oxide cathode Li0.9[Ni1/3Mn1/3Co1/3]O1.95

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

Electrical complex ac conductivity of the compound Li0.9[Ni1/3Mn1/3Co1/3]O1.95 has been studied in the frequency range 10 Hz–2 MHz and in the temperature range 93–373 K. It has been observed that the frequency dependence of the ac conductivity obeys a power law and the temperature dependence of the ac conductivity is quite weak. The experimental data have been analyzed in the framework of several theoretical models based on quantum mechanical tunneling and classical hopping over barriers. It has been observed that the electron tunneling is dominant in the temperature range from 93 K to 193 K. A crossover of relaxation mechanism from electron tunneling to polaron tunneling is observed at 193 K. Out of the several models discussed, the electron tunneling and the polaron tunneling models are quite consistent with the experimental data for the complex ac conductivity. The various parameters obtained from the fits of the experimental results for the real and imaginary parts of the conductivity to the predictions of these models are quite reasonable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Iguchi, Y. Tokuda, H. Nakatsugawa, F. Munakata, J. Appl. Phys. 91, 2149 (2002)

    Article  ADS  Google Scholar 

  2. C.M. Julien, Mat. Sci. Eng. R 40, 47 (2003)

    Article  Google Scholar 

  3. V.W.J. Verhoeven, I.M. de Schepper, G. Nachtegaal, A.P.M. Kentgens, E.M. Kelder, J. Schoonman, F.M. Mulder, Phys. Rev. Lett. 86, 4314 (2001)

    Article  ADS  Google Scholar 

  4. K. Nakamura, H. Ohno, K. Okamura, Y. Michihiro, I. Nakabayashi, T. Kanashiro, Solid State Ion. 135, 143 (2000)

    Article  Google Scholar 

  5. P. Wilk, J. Marzec, J. Molenda, Solid State Ion. 157, 109 (2003)

    Article  Google Scholar 

  6. J.R. Dygas, M. Kopeć, F. Krok, D. Lisovytskiy, J. Pielaszek, Solid State Ion. 176, 2153 (2005)

    Article  Google Scholar 

  7. K. Kushida, K. Kuriyama, Solid State Commun. 129, 525 (2004)

    Article  ADS  Google Scholar 

  8. J.W. Fergus, J. Power Sourc. 195, 939 (2010)

    Article  Google Scholar 

  9. J. Molenda, P. Wilk, J. Marzec, Solid State Ion. 157, 115 (2003)

    Article  Google Scholar 

  10. F. Croce, F. Nobili, A. Deptula, W. Lada, R. Tossici, A. D’Epifanio, B. Scrosati, R. Marassi, Electrochem. Commun. 1, 605 (1999)

    Article  Google Scholar 

  11. T. Ohzuku, Y. Makimura, Chem. Lett. 30, 642 (2001)

    Article  Google Scholar 

  12. Y. Fujii, H. Miura, N. Suzuki, T. Shoji, N. Nakayama, J. Power Sourc. 171, 894 (2007)

    Article  Google Scholar 

  13. M. Gozu, K. S’wierczek, J. Molenda, J. Power Sourc. 194, 38 (2009)

    Article  Google Scholar 

  14. N. Imanishi, M. Fujiyoshi, Y. Takeda, O. Yamamoto, M. Tabuchi, Solid State Ion. 118, 121 (1999)

    Article  Google Scholar 

  15. S. Kabi, A. Ghosh, J. Appl. Phys. 107, 103715 (2010)

    Article  ADS  Google Scholar 

  16. S.R. Elliot, Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

  17. A.R. Long, Adv. Phys. 31, 553 (1982)

    Article  ADS  Google Scholar 

  18. I.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)

    Article  ADS  Google Scholar 

  19. M. Sayer, A. Mansingh, Phys. Rev. B 6, 4629 (1972)

    Article  ADS  Google Scholar 

  20. M. Pollak, Philos. Mag. 23, 519 (1971)

    Article  ADS  Google Scholar 

  21. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Oxford, Clarendon, 1979)

  22. S. Kabi, A. Ghosh, unpublished

  23. A. Ghosh, Phys. Rev. B 42, 5665 (1990)

    Article  ADS  Google Scholar 

  24. A. Ghosh, S. Bhattacharya, A. Ghosh, J. Phys.: Condens. Matter 21, 145802 (2009)

    Article  ADS  Google Scholar 

  25. A. Levstik, C. Filipič, V. Bobnar, S. Drnovšek, J. Holc, Z. Trontelj, Z. Jagličić, Solid State Commun. 150, 1249 (2010)

    Article  ADS  Google Scholar 

  26. A. Levstik, C. Filipič, V. Bobnar, E. Goreshnik, B. Žemva, Z. Trontelj, Z. Jagličić, J. Appl. Phys. 106, 073720 (2009)

    Article  ADS  Google Scholar 

  27. G.E. Pike, Phys. Rev. B 6, 1572 (1972)

    Article  ADS  Google Scholar 

  28. S.R. Elliot, Philos. Mag. 36, 1291 (1977)

    Article  ADS  Google Scholar 

  29. S. Bhattacharya, A. Ghosh, J. Chem. Phys. 127, 194709 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabi, S., Ghosh, A. Tunneling conductivity in lithiated transition metal oxide cathode Li0.9[Ni1/3Mn1/3Co1/3]O1.95 . Eur. Phys. J. B 79, 377–381 (2011). https://doi.org/10.1140/epjb/e2010-10773-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-10773-8

Keywords

Navigation